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1 Introduction
Foundations of Modern Portfolio Theory are based on the work by Markowitz [1952]. Given a
mean-variance optimization (MVO) problem, an investor can obtain an optimal portfolio for a
universe of investable assets. The portfolio’s expected return is maximized under a risk constraint.
The set of portfolios obtained by letting varying the risk constraint is called the efficient frontier.

Although very appealing, the MVO suffers from many drawbacks. MVO’s inputs are statistical
estimates and hence estimated with error. Mean-variance optimization amplifies the effects of
these errors which leads to extreme allocations. Moreover, MVO is very sensitive to changes
in the inputs. This is especially true for expected returns, where small changes tend to produce
a completely different portfolio allocation (Michaud [1989]). The instability is challenging for
portfolio managers who face transaction costs.

Given the lack of diversification and instability of the MVO, one alternative is to ignore all
available information and invest equally in each asset. However, this portfolio is expensive to
manage because it needs to be rebalanced constantly. Another alternative is to invest in risk-based
portfolios. Risk-based investments gained in popularity among practitioners and many academic
papers were written on the subject. Those portfolios are heuristic-based and focus on diversifica-
tion. They do not use expected performance measure as input. They consist in ”allocating” in risk
instead of capital.

Empirically, risk-based portfolios achieve higher Sharpe ratios than the MVO and are more
robust to inputs parameters, especially in turmoil periods. Also, dynamic risk-based strategies
generate less turnover (Bruder and Roncalli [2012]). In addition, risk-based portfolios tend to be
more stable compared to mean-variance portfolio when mean and volatility are varying (Roncalli
[2013]). From a practical perspective, they are therefore very attractive strategies.

Nevertheless, performance of risk-based strategies still depends on the accuracy of the input
parameter since the covariance matrix is subject to estimation risk. The choice of the covariance
model is therefore important. Zakamulin [2015] studies the robustness of the minimum-volatility
with respect to several covariance matrix estimators. Results show that practitioners would gain
significant benefits from adopting a multivariate GARCH model instead of the standard sample co-
variance in a minimum-volatility portfolio context. Also, the use of multivariate GARCH improves
the tracking error and results in a better performance in terms of risk optimization.

The aim of our research is to study the impact of covariance misspecification for a wide set
of risk-based portfolios. This set is composed of the equal-risk-contribution portfolio (Maillard,
Roncalli, and Teı̈letche [2010]), the maximum-diversification portfolio (Choueifaty and Coignard
[2008]), the risk-efficient portfolio (Amenc, Goltz, Martellini, and Retkowsky [2011]) and the
minimum-variance portfolio. Because of its simplicity, we also included the inverse-volatility
portfolio.

For the covariance models, the sample covariance is considered. However, the sample co-
variance matrix becomes inefficient as the number of assets increases compared to the number of
time-series observations. For this reason, we also consider the shrinkage estimator of Ledoit and
Wolf [2003]. That estimator displays a larger bias but is very efficient for short time-series. The
gain in efficiency compensates for the increase in bias so that the overall error is reduced. In short,
it consists of a weighted average of the sample covariance matrix and the covariance matrix given
by the Sharpe’s single factor model.

The two previous covariance models are only valid under the assumption that the covariance
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matrix is constant over time. However, it is well known that the second moments of stock returns
present dynamic behaviors. Hence, the Exponential-Weighted-Smoothing-Average (EWMA) co-
variance matrix, popularized by RiskMetrics [1996] and widely used among practitioners, is also
tested. The last covariance model used in this study is developed by Engle [2002]. It is a more
complex and sophisticated model called Dynamic-Conditional-Correlation (DCC).

In the first part of our study, a Monte Carlo experiment is performed to measure the robustness
of risk-based portfolios to the choice the covariance estimator. We find that allocations given by the
inverse-volatility portfolio and the equal-risk-contribution portfolio are less sensitive to the error in
the covariance matrix estimation. On the other hand, misspecification of the covariance matrix has
a huge impact on the minimum-volatility. For each portfolio, the dynamic-conditional-correlation
model improves significantly the asset allocation. The exponential-weighted-moving-average has
an overall performance not far behind the DCC which can be interesting for practitioners who want
to keep things simple.

In the second part, we study the impact of the covariance on the portfolio turnover for risk-based
investments. Hence, historical simulations are performed on returns from 30 stocks included in the
Dow Jones universe for a period ranging from March 2008 to September 2014. A brief perfor-
mance analysis is also provided. We find that using either the sample or the Ledoit-Wolf covari-
ance matrix results in much more stable portfolios. Using the dynamic-conditional-correlation or
the exponential-weighted-smoothing-average increases significantly the turnover. Superiority in
returns resulting from a dynamic approach for the covariance estimators might not be enough to
encounter the cost incurred by the high portfolio’s turnover.

From a practical standpoint, this study gives a general idea of how an optimized risk-based
portfolio reacts to the covariance input. It also presents the trade-off between performance and
turnover and explicits some issues associated with risk-based approach.

The rest of this essay is organized as follows. Section 3 describes the risk-based portfolios.
Section 4 describes the covariance matrices. Section 5 presents the Monte Carlo study. Section 6
presents the backtest. Section 7 concludes.
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2 R package
The computer code developed to perform the various analyses is available in the R pack-
age RiskPortfolios which can be downloaded from https://github.com/ArdiaD/
RiskPortfolios/. The functions in the package allow us to:

1. Estimate expected returns according to various methodologies;

2. Estimate covariance matrices according to various methodologies;

3. Estimate implied expected returns from the market;

4. Find optimal allocation of various risk-based portfolios.

In addition to our package, we also rely on the package rmgarch1 created by Alexio Ghalanos
for the Dynamic Conditional Correlation calculations. We slightly modified the code to perform
the composite likelihood estimation.

1http://cran.r-project.org/web/packages/rmgarch/index.html
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3 Risk-based portfolios
This section describes the alternatives to the market capitalization portfolio that are used in this
study. Most of those alternative portfolios are heuristics but are mean-variance efficient under
different assumptions. For this section, we use the notation Σ as the (N × N) covariance matrix
of arithmetic returns, w as the (N × 1) vector of weights and ι as a (N × 1) vector of ones.

3.1 Minimum-variance portfolio
The minimum-variance portfolio is the allocation that minimize the risk of the portfolio regardless
of its expected return:

wmin ≡ argmin
w∈CFI

{w′Σw} , (1)

where CFI ≡ {w ∈ R+|w′ι = 1} is a constraint where short sales are not allowed and where wealth
is fully invested. A potential problem with the minimum-variance portfolio is that it puts too much
emphasis on stocks with low volatility and is therefore very concentrated.

3.2 Maximum diversification portfolio
The maximum-diversification portfolio aims at maximizing the benefits from diversification and
is an alternative to the minimum-variance portfolio. Let σ ≡

√
Diag{Σ}. In order to obtain

effective diversification, the diversification ratio:

DR(w) ≡ w′σ√
w′Σw

, (2)

must be greater than one. Thus, weights are obtained from the following optimization problem:

wmd ≡ argmax
w∈CFI

{
w′σ√
w′Σw

}
.

The maximum-diversification portfolio has a maximal Sharpe ratio if the returns are proportional
to their volatility (Choueifaty and Coignard [2008]). Furthermore, this portfolio tend to be less
concentrated than the mean-variance portfolio (Clarke, De Silva, and Thorley [2013]).

3.3 Inverse-volatility portfolio
The inverse-volatility portfolio is an easy-to-implement portfolio extensively used in practice. It
can be seen as a risk-based approach. This portfolio is built such that asset weights are inversely
proportional to their volatility (σ). More precisely, the weights are computed as:

wiv ≡
ι./σ

ι′(ι./σ)
, (3)

where ./ is the element-by-element division. A weakness of this approach is that correlations
between assets are not taken into account. Contrarily to the equal-risk-contribution portfolio which
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is discussed below, each asset in the portfolio does not contribute to the same risk in the portfolio.
Indeed, portfolio volatility is not an additive function of the individual asset volatilities. If for
each stock the Sharpe ratio is the same and if all pairwise correlations are equal, then the inverse-
volatility portfolio is mean-variance efficient and has the highest Sharpe-ratio (Leote de Carvalho,
Lu, and Moulin [2012]).

3.4 Equal-risk-contribution portfolio
It is possible to allocate portfolio’s assets according to their risk. Here, for instance, the notion of
risk could be defined as the volatility, the Value-at-Risk (VaR) or the Expected Shortfall (ES). In
this study, we use the volatility is the risk measure. The equal-risk-contribution portfolio relies on
the risk-contribution of asset i to the portfolio:

RCi ≡ wi
∂R(w)

∂wi

,

where R(w) is the total portfolio risk. According to the Euler decomposition, the sum of the
risk-contribution of each asset is equal to the total portfolio risk:

R(w) =
N∑
i=1

wi
∂R(w)

∂wi

=
N∑
i=1

RCi .

The equal-risk-contribution portfolio consists of building a portfolio such as each asset has the
same risk-contribution in the portfolio. Numerically, optimal weights are computed as:

werc ≡ argmin
w∈CFI

{
N∑
i=1

(%RCi − 1
N

)2

}
,

where %RCi ≡ wi[Σw]i
w′Σw

. As suggested by Roncalli [2013], the Sequential Quadratic Program-
ming (SQP) algorithm is used for the optimization. The volatility of the equal-risk-contribution
portfolio lie between those of the minimum-volatility and the equally-weighted-portfolio (Mail-
lard et al. [2010], Roncalli [2013]). The equal-risk-contribution is mean-variance efficient under
the condition that all assets contribute equally to the portfolio excess return (Bruder and Roncalli
[2012]).

3.5 Risk-efficient portfolio
This risk-efficient portfolio (Amenc et al. [2011]), weighs more on stocks that has a larger contri-
bution to the portfolio’s Sharpe ratio than for the stocks with a smaller contribution. Notice that
this portfolio requires some information about expected returns. Instead of using usual expected
returns in the optimization problem, a methodology similar to Fama and French [1993] is used.
Decile portfolios are created according to the stocks’ semi-deviation. Then, the median semi-
deviation of each decile portfolio, ξ ≡ (ξ1, . . . , ξ10)

′, is computed and is attributed to each stock in
this decile portfolio as an estimate of its expected return. The risk-efficient portfolio is defined as:

wref ≡ argmax
w∈CFI∗

{
w′Jξ√
w′Σw

}
,
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with J a (N × 10) matrix of zeros with the element (i, j) equal to 1 if the semi-variance of stock
i belongs to decile j, and CFI∗ ≡ {w ∈ RN |w′ι = 1, (1/2N)ι ≤ w ≤ (2/N)ι} is the investment
constraint on weights.
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4 Covariance matrix specifications

We study covariance misspecification impact by considering four estimators for the covariance
matrix. The first one is the sample covariance matrix. The second, developed by Ledoit and Wolf
[2003], is a combination of the sample covariance matrix and a structured covariance matrix based
a (market) single factor mode. The last two are dynamic models: the exponential weighted moving
average and the dynamic conditional correlation models. For ease of presentation, expected returns
are assumed to be zero.

4.1 Sample covariance

The sample covariance matrix is a standard approach used in statistics and is easy to implement.
However, its simplicity has a cost. Indeed, the sample covariance matrix can create a lot of prob-
lems when used as input in an portfolio optimization setting. That is because when the number of
assets is large, relative to the number of observations, the covariance matrix is estimated with a lot
of error. For a window of T observations, the (N ×N) sample covariance matrix is defined as:

Σ̂ ≡
T∑
t=1

wtrT−(t−1)r
′
T−(t−1) , (4)

where rt ≡ (r1,t, . . . , rN,t)
′ and wt ≡ 1/(T − 1).

4.2 Ledoit-Wolf

Ledoit and Wolf [2003] develop a covariance matrix based on a statistical technique called shrink-
age which dates back to Stein et al. [1956]. They propose to take a weighted average of the sample
covariance matrix with the Sharpe single-index model covariance estimator. The weight or optimal
shrinkage intensity assigned to the Sharpe ratio model lies between zero and one and controls how
much structure is imposed to the estimator. Hence, the single-index model is the shrinkage target.

The shrinkage intensity depends on the correlation between estimation error. Indeed, when es-
timation error between the shrinkage target and the sample covariance matrix are positively (neg-
atively) correlated, benefit from shrinkage is smaller (larger).

In order to compute the Ledoit-Wolf covariance matrix, let first define F as the shrinkage target
matrix based on a single index market factor model:

ri,t = αi + βirm,t + εi,t , (5)

where ri,t is the asset i return at time t, rm,t is the market return at time t and εi,t is an error term.
From (5), the shrinkage target F can be written as:

F = s2mbb′ + D,

where s2m is the sample variance of the market returns rm,t, b ≡ (β1, . . . , βN)′ and D is a diago-
nal matrix of the residuals variance. The Ledoit-Wolf covariance matrix estimator, Σ̂Shrink, is a
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weighted average of the single factor model based estimator F̂ and the sample covariance matrix
estimator Ŝ:

Σ̂Shrink ≡ δ∗F̂ + (1− δ∗)Ŝ . (6)

In (6), δ∗ is referred to as the optimal shrinkage intensity. The intuition behind (6) is that a compro-
mise between two extreme estimators should perform better than either extreme. As mentioned by
Ledoit-Wolf, “most people would prefer the ‘compromise’ of one bottle of Bordeaux and one steak
to either ‘extreme’ of two bottles of Bordeaux (and no steak) or two steaks (and no Bordeaux)”.

The optimal shrinkage intensity is based on the minimization the expected quadratic loss func-
tion. When the number of observations is large, the optimal shrinkage intensity is close to zero:
the Ledoit-Wolf covariance matrix converges to the sample covariance matrix.

4.3 Exponential weighted moving average
The Exponential weighted moving average (EWMA) covariance matrix is a dynamic model pop-
ularized by RiskMetrics [1996]. Instead of setting the weights of (4) equals to 1/(T − 1), weights
are proportional to a decay factor, λ, which lies between zero and one:

wk ≡ (1− λ)λk−1, k ∈ {1, 2, . . . ,∞} ,

where wk ≥ 0 and limk→∞
∑k

s=1ws = 1. Hence, more recent observations have more weight in
the estimator. Using recursion, the EWMA covariance matrix can be expressed as:

Σ̂t ≡ λΣ̂t−1 + (1− λ)rt−1rt−1 ,

where Σ̂0 is typically initialized to the sample covariance matrix. We use λ = 0.94 which is
selected by RiskMetrics [1996] as the optimal decay factor for daily data.

4.4 The dynamic conditional correlation model
We denote Ft−1 as the set of information available at time t − 1 and rt ≡ (r1t, r2t, ..., rNt)

′ as a
vector of demeaned return at time t with E[rt|Ft−1] = 0 and Var(rt|Ft−1) = Ht. In a dynamic
framework, returns satisfy the following relation:

rt | Ft−1 = H
1/2
t zt ,

where zt is a (N × 1) i.i.d. white noise vector. The constant conditional correlation (CCC) model
by Bollerslev [1990] defines the conditional covariance matrix as:

Ht ≡ DtRDt ,

where Dt is a (N × N) diagonal matrix of conditional volatilities and R is a (N × N) matrix
of constant correlations. The conditional variances are estimated using the GARCH(1,1) model.
Engle [2002] relaxes the constant correlations hypothesis with the dynamic conditional correlation
(DCC) model:

Ht ≡ DtRtDt .
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As for the CCC, with the assumption that the variance processes are GARCH(1,1), the matrix D2
t

is defined as:

D2
t ≡ Diag{ω}+Diag{κ}rt−1r′t−1 +Diag{λ}D2

t−1 .

where ω, κ and λ are (N × 1) vectors of parameters.
The estimation of the conditional correlation matrix is not straightforward since a proxy process

Qt must be estimated and rescaled thereafter. This proxy process, defined as:

Qt ≡ (1− α− β)Q̄ + α(εt−1ε
′
t−1) + βQt−1 ,

needs non-negative values for α and β with the restriction α + β < 1 to ensure both stationarity
and definitiveness of Qt. Here, εt = D−1rt and Q̄ is the unconditional correlation matrix of ε.
Finally, the conditional correlation matrix Rt is obtained by rescaling Qt:

Rt ≡ Diag{Qt}−1/2QtDiag{Qt}−1/2 .

4.4.1 Covariance forecast

The forecast of elements on the diagonal of Dt+k are easily obtained from the GARCH model.
The conditional variance forecast k-step ahead for asset i is obtained as:

E[hi,t+k] = σ̄2
i + (κi + λi)

k(hi,t − σ̄2
i ) .

where σ̄ is the unconditional volatility of the asset i. Because of the nonlinearity of the correlation
process, some assumptions are made for the computation of the conditional correlation forecast
which results in an approximation of the true forecast matrix. Those assumptions are that Q̄ = R̄
and Et[Qt+1] = Et[Rt+1], leading to:

Qt+1 = (1− α− β)Q̄ + αE[ztz
′
t] + βQt ,

and Qt+1 is standardized according to:

Rt+1 = Diag{Qt+1}−1/2Qt+1Diag{Qt+1}−1/2 .

Finally, the forecast k-step ahead of the conditional correlation matrix is obtained as:

Et[Rt+k] =
k−2∑
i=0

(1− α− β)R̄(α + β)i + (α + β)k−1Rk+1 . (7)

Engle and Sheppard [2001] find that this approximation is the one that leads to the smallest bias.

4.4.2 Parameter estimation

Define θ as the parameters related to D and φ the parameters related to R. Given that the random
vector zt = H

−1/2
t εt follows a multivariate normal distribution where E[zt] = 0 and E[ztz

′
t] = I,

the likelihood function is equal to:

L(θ, φ) ≡
T∏
i=1

1

2πn/2|Ht|1/2
exp

{
−1

2
ε′tH

−1
t εt

}
. (8)
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Taking the logarithm of (8) combined with some manipulations, results in the following log-
likelihood form:

l(θ, φ) ≡ lV (θ) + lC(θ, φ) ,

where:

lV (θ) ≡ −1

2

T∑
t=1

(
n log(2π) + log |Dt|2 + ε′tD

−2
t εt

)
,

lC(θ, φ) ≡ −1

2

T∑
t=1

(
log |Rt|+ z′tR

−1
t zt − z′tzt

)
.

Maximizing each individual term is equivalent to maximizing (8). In order to get the DCC param-
eters, a two-steps approach is used. The first step consists in:

θ̂ ≡ arg max
θ

{LV (θ)} ,

and takes the estimated set of parameters as input in the second step:

φ̂ ≡ arg max
φ

{LC(θ̂, φ)} .

However, Engle, Shephard, and Sheppard [2008] show that in large-scale estimation settings, pa-
rameters α and β are estimated with bias when using the conventional Maximum Likelihood.
Hence, the solution is the Composite Likelihood (CL) defined as:

lC(θ, φ) ≡
T∑
t=1

(
1

N

N∑
i=1

∑
j>1

log f(θ, φ, ri,t, rj,t)

)
,

where f(θ, φ, ri,t, rj,t) is the bivariate normal distribution of asset pair i and j and where covari-
ance targeting is imposed. The composite log-likelihood averages the log-likelihoods of pairs of
assets. Each pair yields a valid (but inefficient) likelihood for α and β, but averaging over all
pairs produces an estimator which is relatively efficient, numerically fast, and free of bias even in
large-scale problems. In our context, lC(θ, φ) is equal to:

lC(θ, φ) ≡ −1

2

T∑
t=1

(
1

N

N∑
i=1

∑
j>1

(
log(1− ρ2ij,t) +

z2i,t + z2j,t − 2ρij,tzi,tzi,t

1− ρ2ij,t

))
.

We use a dataset of dimension N = 30 in our study, which can be considered as a large data set.
The composite likelihood technique is therefore more robust.
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5 Monte Carlo study
In portfolio construction, required inputs are subject to estimation risk which may result in exces-
sive portfolio turnover as well as poor out-of-sample performance. Consider a portfolio manager
who rebalances its portfolio actively every day according to the minimum-variance portfolio (1).
On one hand, the portfolio manager can use the sample covariance matrix as input. On the other
hand, he can use a forecast of the covariance matrix over the investment horizon. In the latter case,
(1) is now be defined as:

w∗t ≡ argmin
w∈CFI

{
w′Σt+1|tw

}
, (9)

where Σt+1|t is the covariance matrix forecast one-day ahead. Whatever is the chosen covariance
matrix, the portfolio weights are subject to estimation error since the correct specification of the co-
variance matrix is unknown. This estimation risk becomes important when rebalancing is frequent
and trading costs are taken into account.

5.1 Setup
The aim of this section is to measure portfolio misallocation arising from the covariance matrix
estimation for the previously defined risk-based portfolios. To that aim, we rely on a Monte Carlo
study. The data generating process (DGP) used for the simulations is:

rt | Ft−1 ∼ N (0,Ht) ,

where Ht is computed according to a dynamic conditional correlation model (DCC).
DCC parameters are calibrated with N = 30 stocks belonging to the Dow Jones Composite

index in date of September 2014 with daily adjusted returns. The estimated parameters are pre-
sented in Table 2. In general, shocks on volatilities tend to persist over time since the sum of the
coefficients α + β are close to one. Persistence in correlations is also observed.

Setting k as the number of days between two rebalancing dates, 1736 + k observations are
generated for each stock. Estimated covariances matrix are computed using the first 1736 obser-
vations while the remaining k observations are used to compute the true covariance matrix at the
rebalancing date. The covariance estimation error on weights is then computed as,

d ≡
30∑
i=1

|wi,true − wi,estimated| . (10)

where wi,true are the portfolio weights obtained using the true covariance matrix and wi,estimated are
the portfolio weights obtained using the misspecified covariance matrix. More precisely, we follow
the steps below:

1. Use the fitted DCC model on daily-adjusted returns of the 30 stock belonging the Dow Jones
index as the DGP;

2. Simulate 1736 + k observations for each stock according to the DGP;

3. Compute:
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• the true covariance;

• the covariance forecast according to a DCC model fitted to the simulated data;

• the sample covariance matrix with the simulated data;

• the EWMA covariance matrix with the simulated data;

• the Ledoit-Wolf covariance matrix with the simulated data;

4. Compute:

• the equal-risk-contribution portfolio for each computed covariance matrix;

• the maximum-diversification portfolio for each computed covariance matrix;

• the risk-efficient portfolio for each computed covariance matrix;

• the minimum-variance portfolio for each computed covariance matrix;

5. Compute the distance following (10);

6. Repeat step one to step five 1000 times.

5.2 Results
First, we set the forecast horizon equal to one day and proceed to one thousand simulations. Fig-
ure 1 presents the box plots of the distance (see 10) between portfolio computed with the estimated
covariance matrix and the true covariance matrix.

[Insert Figure 1 about here.]

At first, we see that there is a common pattern between each portfolio. In general, the allocation
can be significantly improved with a dynamic approach for the covariance estimator. Overall, the
covariance forecast that provides the most accurate allocation among portfolios is the dynamic-
conditional-correlation model. That is followed by the exponential-weighted-smoothing average
model. Finally the sample and Ledoit-Wolf covariances matrices result in the worst allocation.

The asset weights given by the minimum-volatility portfolio are extremely sensitive to covari-
ance misspecification in terms of both average distance and uncertainty around the distance. In
fact, for the tested portfolio set, the minimum-volatility portfolio is the most sensitive and the less
robust to covariance misspecification. That is followed by the maximum-diversification and the
risk-efficient portfolio.

It is clear that the portfolios for which the covariance misspecification has the less impact are
the inverse-volatility and the equal-risk-contribution respectively. For both, the average distance
and the uncertainty around the distance are similar except for the exponential-weighted-moving-
average. In the case of the inverse volatility, the allocation with the exponential-weighted-moving-
average is not that far from the allocation with the dynamic-conditional-correlation and the vari-
ance of the portfolio’s allocation is also relatively small. The risk-efficient portfolio as well as the
maximum-diversification portfolio are more sensitive than the equal-risk-contribution but still less
than the minimum-volatility portfolio.

[Insert Figure 2 about here.]
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For the weekly rebalancing results presented in Figure 2, the characteristics of the distance
distribution are almost identical to the ones from the daily rebalancing. The main difference is in
the portfolio allocations given the dynamic-conditional-correlation model where the distance dis-
tribution becomes more volatile and the average distance from the real optimal allocation increased
compared.
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6 Backtest
In this section, we proceed as in Maillard et al. [2010]. The aim is to study the out-of-sample
performance of the risk-based portfolios and assess their sensitivity with respect to the covariance
matrix estimator.

6.1 Setup
Every combination portfolio/covariance is considered as an investment strategy for which backtest
is performed using returns of the 30 stocks belonging to the Dow Jones Composite index from
March 2008 to November 2014. A three-year rolling window is used for the covariance estimation.
Hence, the first rebalancing date is on April 2011. When necessary, log-return covariance matrices
are transformed into arithmetic return covariance matrices following Meucci [2001].

We present results only for daily rebalancing since weekly and monthly rebalancing results
are similar. For each strategy, the portfolio’s annual performance, annual volatility as well as
the information ratio are computed (return divided by the volatility). Risk measures such as the
daily historical Value-at-Risk (VaR) 95% and daily historical Expected Shortfall (ES) 95% are also
computed. The average turnover (T̄ ) is included in order to have a better idea of which covariance
estimator leads to more stable weights over time. The turnover of each period is measured as:

Turn =
N∑
i=1

|wi,t+1 − wi,t+| ,

wherewn,t+1 are the weights after the rebalancing andwn,t+ are the weights just before rebalancing
such as:

ŵi,t+ =
wi,t(1 + ri,t+1)∑N
n=1wi,t(1 + ri,t+1)

. (11)

Here, the turnover measure can be interpreted as the average percentage of wealth traded on each
period. As measure of diversification, the average value of the Gini coefficient (Ḡw) of the portfolio
weights is computed. We use the average value of the Gini coefficient associated with the asset
risk-contribution (ḠRC) as a measure of risk concentration. Recall that the Gini coefficient is a
measure of inequality and lies between zero and one. A lower Gini coefficient involves better
repartition between individuals. Results are presented in Table 1.

[Insert Table 1 about here.]

6.2 Results
In terms of information-ratio, each risk-based strategy dominates the equally-weighted portfolio
with the maximum-diversification as the best performer. As expected, the minimum-volatility strat-
egy has the smallest volatility. Notice that for maximum-diversification and the minimum-volatility
portfolios, both Gini coefficients associated to the stocks’ weights and stocks’ risk-contribution are
high (∼ 70− 85%). It means that those portfolios are concentrated in few assets and that the port-
folios’ risk is driven by few stocks. Recall that by definition of the minimum-volatility portfolio,
assets’ risk-contribution are equal to their respective weights.
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Better diversification properties are achieved by the equal-risk-contribution and the inverse-
volatility. However, their information-ratios are lower. A good alternative might be the risk-
efficient portfolio which has a higher information-ratio without erasing too much diversification.
Indeed, the Gini coefficients for weights are around 30%, about twice the one of the equal-risk-
contribution. The risk-contribution is also more concentrated, but still much less than in the
minimum-volatility.

The choice of a dynamic approach (DCC and EWMA) instead of a static approach (sample and
Ledoit-Wolf) for the covariance matrix estimator has a significant impact on portfolios’ turnover.
Indeed, the use of the dynamic-conditional-correlation or the exponential-weighted-smoothing-
average results in turnover between 2% and 27%. For the sample and Ledoit-Wolf estimators, the
turnover lies between 0.5% and 1.5%.

As an extreme case, the minimum-volatility strategy using a dynamic approach results in a
turnover over 15 times higher than if a static approach were used. The impact on the maximum-
diversification strategy is also important, even more for the exponential-weighted-smoothing-average
which is twice the turnover given by using the dynamic-conditional-correlation model. The portfo-
lio’s turnover for the risk-efficient strategy is about half the one of the minimum-volatility portfolio
for the DCC and EWMA specification.

Yet, the inverse-volatility and the equal-risk-contribution portfolios are the ones for which the
choice of the covariance matrix estimator has the least impact and are the most stable. As an ex-
ample, the inverse-volatility portfolio using the dynamic-conditional-correlation covariance matrix
gives a turnover about 7 times smaller than when the dynamic-conditional-correlation is used for
the minimum-volatility.

Overall, the resulting turnover from dynamic approach for the covariance estimators does not
seem justifiable when looking at return and risk. Indeed, except for the maximum diversification,
it is not obvious which covariance results in the best risk-adjusted returns. Though, it seems that
the EWMA tend to provide slightly better returns. In the end, the biggest impact of the covariance
matrix estimator is definitely on portfolios’ turnover.

From a practical point of view, a portfolio manager should be aware of the impact that his
choice of covariance matrix estimator might have on the stability of his portfolio.
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7 Conclusions
An increasing amount of investors has been forsaking traditional investment methodologies for
risk-based methodologies which consist in allocating risk instead of capital and does not require the
use expected returns. Based on this approach, portfolios which have been the most extensively used
are the equal-risk-contribution portfolio, the maximum-diversification portfolio, the minimum-
variance portfolio, the risk-efficient portfolio and the inverse-volatility portfolio. Although these
portfolios present interesting properties, they are still subject to some concerns.

On one hand, we show in a Monte Carlo framework that the portfolios that are the less sensi-
tive portfolios to misspecification of the covariance matrix are the inverse-volatility and the equal-
risk-contribution. On the opposite, the minimum-volatility portfolio is extremely sensitive to the
covariance matrix estimator. In general, the dynamic-conditional-correlation and the exponential-
weighted-smoothing-average covariances can improve significantly the asset allocation when com-
pared to the sample or Ledoit-Wolf covariance matrix estimators.

On the other hand, in a historical simulation framework, using the exponential-weighted-
smoothing-average or the dynamic-conditional-correlation dynamic as a covariance estimator in-
creases significantly portfolios turnover without resulting in significant higher returns. Hence, a
portfolio manager subject to transaction cost might be better off using the sample or Ledoit-Wolf
covariance estimator.

Finally, portfolios managers should be aware that, as for the MVO, concerns persist for risk-
based portfolios. This research could be extend to a set of different investment universes as well as
a widen set of covariance matrix estimators.
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A Tables

Table 1: Backtest results: This table presents the performance statistics for the 6 different strategies when the
portfolios are rebalanced on a daily basis. Here, r is the annualized daily average return and σ is the annualized
volatility, both in percent. Hence, the Information Ratio is also on an annual basis. VaR95 is the daily historical
Value-at-Risk 95%. ES95 is the daily historical Expected Shortfall 95%. T̄ is the daily average turnover of the strategy
expressed in percent. Q̄w is the average Gini coefficient associated the the weights and Q̄RC is the average Gini
coefficient associated to the risk-contribution. Both are expressed in percent.

Strategy Cov. r σ I-R VaR95 ES95 T̄ Q̄w Q̄RC

wew

dcc 16.74 14.24 1.18 -1.37 -2.18 0.62 0.00 15.92
ewma 16.74 14.24 1.18 -1.37 -2.18 0.62 0.00 18.45
lw 16.74 14.24 1.18 -1.37 -2.18 0.62 0.00 16.49
sample 16.74 14.24 1.18 -1.37 -2.18 0.62 0.00 16.50

wiv

dcc 16.32 13.39 1.22 -1.35 -2.06 3.58 14.34 7.43
ewma 16.29 13.39 1.22 -1.35 -2.04 2.58 14.49 11.76
lw 16.40 13.38 1.23 -1.34 -2.05 0.62 14.36 6.06
sample 16.40 13.38 1.23 -1.34 -2.05 0.62 14.36 6.11

werc

dcc 16.85 13.22 1.28 -1.36 -2.01 3.76 15.59 0.00
ewma 17.40 13.22 1.32 -1.29 -2.01 3.86 17.93 0.00
lw 16.54 13.24 1.25 -1.31 -2.03 0.64 16.41 0.00
sample 16.54 13.24 1.25 -1.31 -2.03 0.64 16.31 0.00

wref

dcc 18.22 13.62 1.34 -1.28 -2.03 12.43 32.83 33.42
ewma 18.66 13.73 1.36 -1.29 -2.04 8.78 33.00 31.39
lw 17.42 13.43 1.30 -1.28 -2.04 2.48 32.92 32.84
sample 17.43 13.46 1.29 -1.29 -2.04 2.50 32.91 32.98

wmd

dcc 21.92 12.60 1.74 -1.19 -1.83 13.61 69.59 69.42
ewma 24.04 13.00 1.85 -1.24 -1.81 24.41 77.94 77.90
lw 18.85 12.66 1.49 -1.19 -1.90 1.46 71.19 69.84
sample 18.92 12.76 1.48 -1.22 -1.90 1.51 71.42 70.23

wmin

dcc 15.01 10.68 1.41 -1.00 -1.52 26.87 84.92 84.92
ewma 17.26 10.98 1.57 -1.05 -1.53 21.57 83.45 83.45
lw 15.20 10.61 1.43 -1.00 -1.54 1.09 84.48 84.48
sample 15.31 10.63 1.44 -0.98 -1.54 1.17 84.62 84.62
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B Figures

Figure 1: Daily rebalancing: This figure presents the distribution of the allocation error for the four choices
of covariance matrices (DCC, EWMA, LW, Sample) and the five risk-based portfolios (werc,wiv, wmd,wmin,
wref). The errors are computed according to (10) and assuming that the strategy is rebalanced on a daily
basis.
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Figure 2: Weekly rebalancing: This figure presents the distribution of the allocation error for the four
choices of covariance matrices (DCC, EWMA, LW, Sample) and the five risk-based portfolios (werc,wiv,
wmd,wmin, wref). The errors are computed according to (10) and assuming that the strategy is rebalanced on
a weekly basis.
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C DGP parameters

Table 2: DGP parameters. The parameters are estimated with the past three years of daily returns for the 30
stock belonging to the Dow Jones index.

Asset ω α β α+ β

GARCH
1 <0.000 0.07291 0.9138 0.9867
2 <0.000 0.08979 0.8890 0.9788
3 <0.000 0.08923 0.9037 0.9929
4 <0.000 0.07432 0.9151 0.9895
5 <0.000 0.09601 0.8917 0.9878
6 <0.000 0.09845 0.8896 0.9881
7 <0.000 0.02129 0.9648 0.9861
8 <0.000 0.09252 0.8794 0.9719
9 <0.000 0.10817 0.8781 0.9863

10 <0.000 0.09193 0.8925 0.9845
11 <0.000 0.05631 0.9377 0.9940
12 <0.000 0.06886 0.9268 0.9957
13 <0.000 0.10323 0.8754 0.9786
14 <0.000 0.04905 0.9342 0.9833
15 <0.000 0.13462 0.8185 0.9531
16 <0.000 0.07956 0.9145 0.9941
17 <0.000 0.14918 0.8115 0.9607
18 <0.000 0.04233 0.9470 0.9893
19 <0.000 0.07422 0.9048 0.9790
20 <0.000 0.05460 0.9315 0.9861
21 <0.000 0.07954 0.8763 0.9559
22 <0.000 0.05553 0.9359 0.9915
23 <0.000 0.13296 0.8354 0.9684
24 <0.000 0.07643 0.9144 0.9908
25 <0.000 0.07657 0.9114 0.9879
26 <0.000 0.04309 0.9526 0.9957
27 <0.000 0.09182 0.8843 0.9761
28 <0.000 0.15431 0.8235 0.9778
29 <0.000 0.05364 0.9329 0.9865
30 <0.000 0.08574 0.8973 0.9830

DCC
- - 0.0222 0.9566 0.9788
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