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Résumé 

Cette thèse étudie la performance des fonds mutuels du point de vue de leurs clientèles les 

plus favorables. Elle comporte trois essais dans lesquels nous développons et adaptons une 

approche de mesure de performance qui considère le désaccord entre investisseurs et les 

effets de clientèle pour répondre à trois questions de recherche.  

Dans le premier essai, nous étudions le désaccord entre investisseurs et les effets de 

clientèle dans l’évaluation de performance en développant une mesure pour les plus 

favorables clientèles des fonds. La mesure est une borne supérieure de performance dans un 

marché incomplet sous conditions de la loi d’un seul prix et d’absence de bonnes affaires 

que sont les investissements aux ratios de Sharpe déraisonnablement élevés. Nous montrons 

que considérer le point de vue des clientèles les plus favorables résulte en une performance 

généralement positive. Le désaccord total mesuré par la différence entre les bornes 

supérieure et inférieure de performance est économiquement et statistiquement significatif. 

Dans le deuxième essai, nous diagnostiquons les mesures de performance standards 

en comparant leurs alphas avec celui des plus favorables clientèles. Les résultats montrent 

que les modèles linéaires inconditionnels, leurs versions conditionnelles et la mesure basée 

sur la loi d’un seul prix donnent des performances sévères mais admissibles. Les modèles 

de consommation ont un problème d’inadmissibilité. La mesure de performance à l’abri de 

manipulation génère des alphas sensibles au choix du paramètre d’aversion au risque.      

Dans le troisième essai, nous proposons une mesure de performance spécifique aux 

clientèles basée sur les préférences de style des investisseurs dans les fonds mutuels. 

Considérant le désaccord de performance et exploitant mieux les données de classifications, 

nous investiguons huit mesures représentant des clientèles ayant des préférences favorables 

aux styles d’actions basés sur la taille et la valeur. Nous trouvons que les fonds classés 

selon la taille et la valeur ont des performances moyennes neutres ou positives 

lorsqu’évalués avec leur mesure spécifique aux clientèles appropriée. La performance des 

autres fonds est sensible aux clientèles. Les résultats supportent un rôle significatif des 

clientèles de style en évaluation de performance.  
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Abstract 

This thesis studies the performance evaluation of mutual funds from the point of view of 

their most favorable clienteles. It contains three essays in which we develop and adapt a 

performance measurement approach that accounts for investor disagreement and clientele 

effects to answer three research questions.  

In the first essay, we investigate investor disagreement and clientele effects in 

performance evaluation by developing a measure that considers the best potential clienteles 

of mutual funds. The measure is an upper performance bound in an incomplete market 

under the law-of-one-price condition and a no-good-deal condition that rules out 

investment opportunities with unreasonably high Sharpe ratios. We find that considering 

investor disagreement and focusing on the best potential clienteles lead to a generally 

positive performance for mutual funds. The total disagreement measured by the difference 

between upper and lower performance bounds is economically and statistically significant. 

In the second essay, we diagnose the validity of standard performance measures by 

comparing their alphas with the alpha from a performance measure that evaluates mutual 

funds from the point of view of their most favorable investors. The results show that 

unconditional linear factor models, their conditional versions and the law-of-one price 

measure give severe but admissible evaluations of fund performance. Consumption-based 

models suffer from an inadmissibility problem. The manipulation proof performance 

measure generates alphas that are sensitive to the choice of risk aversion parameter. 

In the third essay, we propose a clientele-specific performance evaluation based on 

the style preferences of mutual fund investors. Considering performance disagreement and 

better exploiting style classification data, we investigate eight measures to represent 

clienteles with favorable preferences for size and value equity styles. We find that funds 

assigned to size and value styles have neutral to positive average alphas when evaluated 

with their appropriate clientele-specific measure. The performance of the other funds is 

sensitive to the clienteles. Our findings support a significant role for style clienteles in 

performance evaluation. 
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Avant-Propos 

Cette thèse comporte cinq chapitres. Le premier chapitre consiste en une introduction 

générale qui présente la revue de la littérature ainsi que les questions de recherche, objectifs 

et contributions de la thèse. Les chapitres 2, 3 et 4 font l’objet de trois articles scientifiques. 

Le premier article inclut dans de cette thèse (chapitre 2), intitulé « Mutual Fund 

Performance Evaluation and Best Clientele », est révisé et resoumis au « Journal of 

Financial and Quantitative Analysis ». Le dernier chapitre présente la conclusion générale.  

Les trois articles inclus dans cette thèse ont été rédigés en anglais. Ils sont écrits en 

collaboration avec mon directeur de thèse Stéphane Chrétien, professeur titulaire au 

Département de finance, assurance et immobilier de l’Université Laval. Je suis l’auteure 

principale et la responsable de la collecte et des traitements des données ainsi que des 

résultats.  

Les résultats des articles 1 et 2 (chapitres 2 et 3) ont été présentés dans différents 

congrès : 2014 Mathematical Finance Days à Montréal, 2014 European Financial 

Management Association à Rome, 2014 World Finance Conference à Venise, 2014 

Financial Management Association Annual Meeting à Nashville, Tunisian Society of 

Financial Studies 2014 Finance Conference à Sousse, et Congrès 2015 de la Société 

canadienne de science économique à Montréal. Ces articles ont aussi fait l’objet de 

séminaires départementaux à l’École des sciences de la gestion de l’Université de Québec à 

Montréal, au « Ted Rogers School of Management » de « Ryerson University », à la 

Faculté des sciences de l’administration de l’Université Laval et à l’Université du Québec 

en Outaouais.  
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1 Motivation and Research Questions 

1.1 Introduction 

As it did in the 1980s and 1990s, the U.S. mutual fund industry continues to grow 

significantly in the new millennium, from total net assets of $6,846 billion in December 

1999 to $15,852 billion in December 20141. This growth occurs despite difficult financial 

market conditions and in light of several studies, starting with Jensen (1968), and including 

Fama and French (2010) and Barras, Scaillet and Wermers (2010) more recently, that 

document negative performance for mutual funds after considering trading costs and 

expenses. These conflicting results between the underperformance of mutual funds and 

their growing industry continue to be one of the most longstanding issues in academic 

finance, with Gruber (1996) calling this contradiction a « puzzle ».  

Recently, Ferson (2010) and Ferson and Lin (2014) outline an area of research that 

could potentially provide a resolution to this puzzle. Mutual funds cater to specific 

clienteles through their management style and other investment choices. In incomplete 

markets, investors disagree about the attractiveness of a fund, and the fund value for its 

targeted clienteles is likely to be higher than the values for other groups of investors. As a 

positive evaluation for the targeted clienteles could justify the continued popularity of the 

mutual fund industry, Ferson (2010, p. 229) emphasizes that a challenge for future research 

is « to identify and characterize meaningful investor clienteles and to develop performance 

measures specific to the clienteles ». Analyzing generally the effect of disagreement and 

heterogeneous preferences on mutual fund performance, Ferson and Lin (2014) argue that 

such effects can be similar in importance to the widely documented effects of the 

benchmark choice problem and statistical imprecision in estimates of alpha. 

This thesis includes three essays on the performance evaluation of mutual funds that 

further explore the arguments of Ferson (2010) and Ferson and Lin (2014). Our main 

distinctive feature is that we study the performance from investors who are favorable to 

                                                 
1
See p. 9 of the 2015 Investment Company Fact Books (55th edition), published by the Investment Company 

Institute. 
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mutual funds, in the sense that they value the funds at an upper bound in a setup where the 

market is incomplete, preferences are heterogeneous and investments that are good deals 

are ruled out. For performance evaluation purpose, such setup avoids relying on the point of 

view of representative investors, as most of the literature has done, and instead concentrates 

on investors who are potentially the best clienteles of the funds. 

As the essays in this thesis are written as stand-alone papers, the general goal of this 

chapter is to provide an overview of their common themes and establish relations between 

them. Hence, in this chapter, we first provide a selective review of the mutual fund 

performance evaluation literature to introduce the main issues motivating this thesis. 

Second, we present an overview of the research questions, objectives and contributions of 

the three essays in this thesis. Third, we briefly describe the new performance measurement 

approach developed and implemented in this thesis to account for most favorable investors. 

Finally, we conclude by stating how the rest of the thesis is structured.  

1.2 Literature Review on the Performance Evaluation of Mutual Funds 

1.2.1 Performance Evaluation Approaches 

Investors face the challenge of selecting the best mutual funds to invest in. Portfolio 

performance measures can help them to evaluate investment choices available in the 

market. Starting with the classic CAPM-based measures of Jensen (1968), Sharpe (1966), 

Treynor (1965) and Treynor and Mazuy (1966), many performance measures have been 

developed, with more than 100 ways compiled by Cogneau and Hübner (2009a, b).  

The most common measures are based on linear multi-factor models and consider 

the regression intercept (generally called alpha) as performance value (Lehmann and 

Modest (1987), Sharpe (1992), Elton, Gruber, Das and Hlavka (1993), etc.). Another 

prevalent measure use portfolio holdings to infer the manager’s ability for market timing 

and asset selectivity (Grinblatt and Titman (1989), Grinblatt and Titman (1993), Daniel, 

Grinblatt, Titman and Wemers (1997), etc.). Conditional measures account for public 

information in evaluating performance (Ferson and Schadt (1996), Chen and Knez (1996), 

Christopherson, Ferson and Glassman (1998), Ferson and Khang (2002), etc.).  
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Measures based on the stochastic discount factor (SDF) approach compute SDF 

alpha as the expected product of the SDF and the portfolio return minus one (Glosten and 

Jagannathan (1994), Chen and Knez (1996), Dahlquist and Söderland (1999), Farnsworth, 

Ferson, Jackson and Todd (2002), Ferson, Henry and Kisgen (2006), etc.). As a final 

example, Bayesian measures use prior beliefs on the manager’s ability to outperform the 

benchmark or the validity of an asset pricing model (Baks, Metrick and Wachter (2001), 

Pástor and Stambaugh (2002a, b), etc.) in performance evaluation. 

Despite the abundance of measures, and the even greater number of studies applying 

them, empirical results from the literature are difficult to reconcile on many issues. The 

remainder of this review examines issues that are the most important for this thesis: value 

added by active management, benchmark choice problem, comparison of performance 

measures with simulations, heterogeneous preferences of mutual fund investors, mutual 

fund styles and mutual fund data biases. 

1.2.2 Value Added by Active Management 

A debate exists on whether active management adds value. Most but not all of the empirical 

literature concludes that active management does not generate better performance than 

passive management on average. For example, the classic study of Jensen (1968) finds that 

active management is unable to outperform the benchmark, concluding that investing in 

index funds may be better. However, if this result is true, why do investors pay to invest in 

active management? To answer this question, a more recent literature re-examines the issue 

of whether or not active management adds value.   

Gruber (1996) investigates reasons that motivate investors to buy actively-managed 

mutual funds, even if they could achieve better performance by investing in index funds. 

He suggests that some skilled managers can forecast future performance from past 

performance and that their management ability may not be included in the prices. Baks, 

Metrick and Wachter (2001) find that, if their priors include past returns, investors would 

choose actively-managed mutual funds with positive historical alphas. They also argue that 

it is relevant for investors to base their investment decisions on their prior beliefs about the 

managers’ ability. Pástor and Stambaugh (2002b) conclude that both prior beliefs on the 
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manager’s ability and the selection of the evaluation model may affect the choice of 

optimal investment. Berk and Green (2004) find that about 80% of managers add value 

with their active strategies. However, this value is absorbed by management expenses 

charged to investors. Similarly, Berk (2005) argues that active management adds value, but 

fund managers capture it for themselves through expenses and fees. 

Kacperczyk, Sialm and Zheng (2005) find that managers who concentrate their 

investments in industries on which they hold information achieve better performance. They 

document that the superior performance of concentrated mutual funds is mainly due to their 

stock selection ability. Kosowski, Timmermann, Wermers and White (2006) demonstrate 

that a sizable minority of growth-oriented fund managers possess skill and earn abnormal 

returns. Cremers and Petajisto (2009) argue that high-activity managed funds outperform 

their benchmarks both before and after expenses and fees. However, low-activity managed 

funds underperform their benchmarks after expenses and fees. 

French (2008) compares the cost of active management versus the cost of passive 

management. He argues that, by choosing passive management, investors could have 

increased their average annual return by 0.67% between 1980 and 2006. Fama and French 

(2010) show that few actively managed funds are able to cover their costs. They find that 

mutual funds perform better when they consider gross returns versus net returns, suggesting 

that costs are too high. Controlling for false discoveries, Barras, Scaillet and Wermers 

(2010) argue that 75% of mutual funds exhibit zero alpha. The proportion of skilled 

managers, who achieve a positive alpha after management and transaction costs, diminishes 

rapidly during the study period. However, the proportion of unskilled managers increases 

during the same period. Using a refined false discovery approach, Ferson and Chen (2015) 

find smaller fractions of zero alpha managers and larger fractions of unskilled managers.  

In summary, there is a contradiction between the growth of the actively managed 

mutual fund industry along with the discovery of some skill by active managers, and the 

empirical results of numerous studies that active management does not generate better 

performance than passive management. This contradiction leaves unresolved the question 

of whether active management adds value. A further issue raised by some studies, the 

benchmark choice problem, blurs this debate further. 
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1.2.3 Benchmark Choice Problem 

As discussed previously, there are many approaches for measuring performance. 

Theoretically and empirically, choosing the right model for measurement, i.e., the 

benchmark choice problem, is an important issue. It is especially crucial in light of the 

empirical results that performance evaluation can change significantly across models and 

other methodological choices (Lehmann and Modest (1987) and Grinblatt and Titman 

(1994)). 

In the context of the CAPM, Roll (1978), Dybvig and Ross (1985a, b) and Green 

(1986) show theoretically that performance measurement is sensitive to the benchmark 

choice. Choosing an inefficient benchmark may lead to biased performance evaluation. 

Lehmann and Modest (1987) confirm empirically this result by investigating the “bad 

model” problem for the CAPM and APT. Grinblatt and Titman (1994) also document the 

significant effect of the benchmark choice on Jensen’s alpha and the measures of Grinblatt 

and Titman (1989) and Treynor and Mazuy (1966).  

Chen and Knez (1996) argue that most beta-pricing models could fail to give zero 

performance to passive portfolios, a condition they establish for the admissibility of a 

performance measure. Ahn, Cao and Chrétien (2009) propose a conservative way to assess 

the effect of the benchmark choice problem. They examine performance values obtained by 

widely used models and show that between 8% and 50% of these values do not fall inside 

no-arbitrage bounds on admissible evaluation. 

The literature interested in the benchmark choice problem shows that performance 

measures ultimately depend on the reliability of the underlying asset pricing model (see 

Fama (1998) for a discussion). One way to examine this reliability is by looking at the 

performance of performance measures in simulated experiments.  

1.2.4 Comparison of Performance Measures with Simulations 

There is a growing literature studying the validity of performance measures with 

simulations. Goetzmann, Ingersoll and Ivković (2000) show that the Henriksson and 

Merton (1981) timing measure applied to monthly returns of a simulated daily timer are 
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biased downward. Kothari and Warner (2001) argue that standard performance measures 

fail to detect abnormal performance, especially for mutual funds with style characteristics 

relatively different from the market portfolio. By constructing artificial mutual funds based 

on market timing or asset selectivity abilities, Farnsworth, Ferson, Jackson and Todd 

(2002) find little evidence of performance evaluation differences for SDF measures.  

Using a bootstrap technique, Kosowski, Timmermann, Wermers and White (2006) 

find that some managers present selectivity skills and achieve positive performance after 

costs. They conclude that this performance persists and is not attributed to luck. Coles, 

Daniel and Nardari (2006) show that using a “bad model” leads to biased measures of 

selectivity and timing. The resulting invalid inferences may considerably affect fund 

ranking. Using a simulation setup inspired by Farnsworth, Ferson, Jackson and Todd 

(2002), Chrétien, Coggins and d’Amours (2015) study the performance of daily, occasional 

and monthly timers. They find that market timing measures are problematic when there is a 

mismatch between the frequency of timing activities and the frequency of data for 

performance measurement.   

Relying on simulations with explicit controls on the true benchmark and manager’s 

ability allows studying the effect of the benchmark choice problem and the power of 

performance measures to detect value added by active management. However, this 

literature focuses exclusively on standard models based on representative investors 

providing a unique mutual fund evaluation. Some recent studies argue instead on the 

importance of considering heterogeneous investors or clienteles whose different 

preferences can provide a multiplicity of mutual fund evaluations.    

1.2.5 Heterogeneous Preferences and Investor Disagreement  

Mutual fund investors select their investments based on numerous criteria, like 

management style, and clearly disagree on what funds are the most valuable for their 

portfolios. Accordingly, the vast majority of mutual funds advocate active management 

strategies to cater to specific clienteles of investors. However, most performance measures 

rely indirectly on representative investors by making assumptions on preferences, return 

distributions and/or market completeness. As argued by Ferson (2010), the real-life 
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existence of heterogeneous investor clienteles suggests the implementation of performance 

measures specific to the clienteles. The effect of investor heterogeneity and performance 

disagreement in mutual funds is an area of research with recent contributions by Ahn, Cao 

and Chrétien (2009), Bailey, Kumar and Ng (2011), Del Guercio and Reuter (2014) and 

Ferson and Lin (2014).  

In a general setup where only the no arbitrage condition is imposed, Ahn, Cao and 

Chrétien (2009) find a set of admissible performance values that suggests large valuation 

disagreement across mutual funds investors. They argue that more than 80% of mutual 

funds are given a positive performance by some investors. Bailey, Kumar and Ng (2011) 

investigate reasons behind the variety of mutual funds across individual investors. They 

find that behavioral biases affect a certain class of investors, who trade frequently with bad 

timing and choose funds with relatively high expense ratios and turnover. This class of 

investors achieves poor performance as a result, compared to other classes of investors. 

They conclude that behavioral biases are a factor of investor heterogeneity in the mutual 

fund sector. 

Del Guercio and Reuter (2014) distinguish between two types of market segments 

for retail funds: funds marketed directly to investors and funds sold through brokers. They 

find no evidence that funds marketed directly to retail investors underperform their 

benchmarks. However, they uncover evidence of underperformance of actively managed 

funds sold through brokers. They conclude that the retail mutual fund market is formed 

from two broad clienteles that value funds differently. 

In an incomplete market setup, Ferson and Lin (2014) show that investor 

heterogeneity and disagreement affect considerably performance evaluation, as investors 

look differently at the attractiveness of the same fund. They develop bounds on expected 

disagreement with traditional alpha and document economically and statistically significant 

values. They argue that the effects of heterogeneous preferences and investor disagreement 

on performance are as important as the effects of the benchmark choice problem and the 

statistical imprecision in estimates of alpha. 
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As mutual fund investors have heterogeneous preferences, numerous investment 

styles are offered, with different styles reaching different clienteles. A literature exists on 

identifying and understanding mutual fund styles. 

1.2.6 Mutual Fund Styles 

Mutual funds cater to specific clienteles through their investment style (value, growth, 

large-cap, small-cap, etc.). Investors thus have a variety of styles to choose from, and style 

classifications, like the popular Morningstar Mutual Fund Style Box, are useful tools in 

their decision making process. Following Sharpe’s (1992) introduction of return-based style 

analysis as a technique for uncovering the style allocations of mutual funds, there is a 

literature on the validity of existing mutual fund style classifications. Brown and 

Goetzmann (1997), Dibartolomeo and Witkowski (1997) and Kim, Shukla and Thomas 

(2000) show evidence of misclassification in reported mutual fund investment styles.  

Mutual fund styles are also potentially helpful in identifying meaningful investor 

behavior and clienteles. Barberis and Shleifer (2003) argue that fund investors withdraw 

flows from styles having past poor performance, to invest in styles that exhibit high past 

performance. Blackburn, Goetzmann and Ukhov (2013) show that clientele characteristics 

are behind investors’ preferences toward a specific style. They explain that investors in 

different styles exhibit significant differences in their trading behavior. Growth fund 

investors rely upon momentum, whereas value fund investors prefer contrarian trading.    

Finally, there are biases in mutual fund data that can affect all empirical research on 

the topic. The last subsection of this review discusses the literature on the two most 

important biases.  

1.2.7 Mutual Fund Data Biases 

Although there have been important advances in historical data availability since 

Morningstar first provided electronic information on mutual funds, databases continue to 

suffer from biases affecting performance evaluation (Cuthbertson, Nitzsche and O’Sullivan 

(2010)). The first widely documented bias, as discussed by Brown, Goetzmann, Ibbotson 

and Ross (1992), Brown and Goetzmann (1995), Malkiel (1995), Gruber (1996) and 
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Carhart (1997), among others, is survivorship bias. Survivorship bias occurs when a poorly 

performing fund leaves the database so that researchers study only the performance and 

persistence of surviving funds (Aragon and Ferson (2006)). Brown, Goetzmann, Ibbotson 

and Ross (1992) show that survivorship bias affects the relationship between fund returns 

and their volatility. Malkiel (1995) documents the impact of survivorship bias, finding an 

average annual return of 15.69% for all funds versus 17.09% for surviving funds, between 

1982 and 1991. To alleviate the survivorship bias documented in the Morningstar database, 

Brown and Goetzmann (1995) and Carhart (1997) construct samples which do not suffer 

from this bias, the latter’s work leading to the creation of the now widely used CRSP 

Survivorship Bias Free Mutual Fund Database. 

Another mutual fund database problem consists of including returns realized before 

the fund entry into the database, a back-fill bias discussed by Elton, Gruber and Blake 

(2001) and Aragon and Ferson (2006). Such returns can occur because of an incubation 

strategy where multiple funds are started privately, but only some funds are opened to the 

public at the end of the incubation period. Evans (2010) shows that an incubation bias 

affects the performance upward, as funds in incubation that eventually open to the public 

outperform already public funds by 3.5% annually during the incubation period. As a 

solution, Evans (2010) proposes to exclude the incubation period from the sample, a period 

that typically corresponds to the first year of available fund returns.  

As reflected by the large number of contributions mentioned in this selective 

literature review, the evaluation of mutual fund performance is one of the most studied 

issues in finance. Despite the abundance of measures and results, this area of research is 

still very active and continues to evolve rapidly. We present in the next subsection the 

research questions, objectives and contributions to the existing literature of this thesis. 

1.3 Research Questions, Objectives and Contributions 

1.3.1 Research Questions 

Mutual funds are among the preferred investment vehicles of investors. Of great 

importance to individuals, they often play a strategic role in their personal finances, either 
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through direct investment from their individual accounts or indirect use by pension funds. 

Furthermore, differentiated by their investment style and other management choices, they 

hope to satisfy the various needs of different clienteles. As previously stated, Ferson (2010, 

p.229) argues that it is important “to identify and characterize meaningful investor 

clienteles and to develop performance measures specific to the clienteles”. In this thesis, we 

propose, develop and empirically implement a new performance evaluation approach with 

investor disagreement to answer this challenge. This approach is used to study three general 

research questions, one for each essay of this thesis. We can formulate these three questions 

as follows.  

Essay 1 (Chapter 2): What is the performance evaluation of mutual funds from the 

perspective of their best potential clienteles?  

Several empirical studies, including Glode (2011), Bailey, Kumar and Ng (2011) 

and Del Guercio and Reuter (2014), concentrate on identifying specific clienteles. Other 

papers, like Ferson and Lin (2014), study the general effect of investor disagreement and 

heterogeneity on mutual fund performance evaluation. However, these studies do not focus 

on the evaluation of mutual funds from the perspective of their best potential clienteles. 

Arguably, this evaluation is the most relevant performance evaluation for mutual funds. 

Although other investors may disagree with this evaluation, mutual funds should at least 

provide positive performance to their best clienteles. Using a measure based on an upper 

bound on admissible performance evaluation, extending Cochrane and Saá-Requejo (2000) 

and Ahn, Cao and Chrétien (2009), essay 1 develops and implements a measure of 

performance for the class of investors most favorable to mutual funds. It also provides 

additional evidence on investor disagreement and clientele effects in performance 

evaluation.  

In addition to performance evaluation, we can use this new measure to develop a 

diagnostic tool for candidate performance measures and examine performance 

disagreement between two important groups of investors: representative investors, on 

whom standard measures typically rely for evaluation, versus best clienteles, who are 

potentially the most valuable targets for funds catering to specific clienteles. 
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Essay 2 (Chapter 3): How do best potential clienteles and representative investors implicit 

in commonly used asset pricing models differ in their performance evaluations of mutual 

funds? 

Some studies use simulations with controlled managerial ability to diagnose the 

validity of performance measures (Kothari and Warner (2001), Farnswoth, Ferson, Jackson 

and Todd (2002), Kosowski, Timmermann, Wermers and White (2006) and Chrétien, 

Coggins and d’Amours (2015)). In contrast to these studies and aligned with the bound 

approach initiated by Hansen and Jagannathan (1991), essay 2 proposes a different 

diagnostic tool by using the best clientele alpha developed in essay 1. It then empirically 

implements the tool to assess the validity of the following candidate models: the CAPM 

and the models of Fama and French (1993), Carhart (1997) and Ferson and Schadt (1996)), 

four conditional linear factor models (conditional versions of the previous four models), 

two consumption-based models (a power utility model and an external habit-formation 

preference model first examined by Cochrane and Hansen (1992)), the manipulation proof 

performance measure of Goetzmann, Ingersoll, Spiegel and Welch (2007) and the 

nonparametric law-of-one-price (LOP) measure of Chen and Knez (1996). 

Standard performance measures (like the CAPM alpha) focus on a unique 

benchmark (like the market portfolio) to represent the perspective of all investors. The best 

clientele alpha instead evaluates mutual funds from the perspective of their most favorable 

investors. Two alternative hypotheses can shed light on the difference between the alphas 

of representative investors and best clienteles. On the one hand, an inadmissibility problem, 

which is related to the benchmark choice problem, occurs when a candidate alpha is greater 

than the upper admissible bound that is the best clientele alpha. On the other hand, a 

misrepresentation problem occurs when a candidate alpha is lower than the best clientele 

alpha, and it indicates large investor disagreement in performance evaluation. As shown by 

Ferson and Lin (2014), with investor disagreement, the performance from standard 

measures can greatly misrepresent the value of funds for some of their clienteles. By 

formally comparing performance values for best potential clienteles with those for 

representative investors, essays 2 quantifies this misrepresentation and compares it across 
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different standard measures. Such a comparison forms the basis of an evaluation of the 

appropriateness of standard measures for the purpose of performance evaluation.  

Another application of the best clientele performance approach developed in essay 1 

is to focus on clienteles interested in particular investment styles within the mutual fund 

industry for performance measurement.  

Essay 3 (Chapter 4): What is the performance evaluation of mutual funds from the 

perspective of clienteles with favorable preferences for different investment styles?  

Equity style investing (value, growth, small-cap, large-cap) has become dominant in 

industry practices. For example, thousands of equity mutual funds advertised themselves 

according to their size and value focuses, oftentimes starting with their names. They cater 

to and attract millions of size and value investors. Equity styles are thus relevant to identify 

meaningful investor clienteles. Barberis and Shleifer (2003) point out the growing interest 

of financial service firms to understand style preferences and there is a related literature on 

existing mutual fund style classifications (see Kim, Shukla, and Tomas (2000), Brown and 

Goetzmann (1997), Dibartolomeo and Witkowski (1997), among others). Some studies 

attempt to link the decision to invest in particular styles to investors’ preferences (see Del 

Guercio and Tkac (2002) and Goetzmann and Massa (2002)). Other studies, like Shefrin 

and Statman (1995, 2003), Blackburn, Goetzmann and Ukhov (2013) and Shefrin (2015) 

document significant differences in the judgments, sentiment sensitivity and trading 

behavior of style investors. 

Essay 3 develops and implements style-clientele-specific performance measures to 

account for the style preferences of mutual fund investors. The approach is based on a new 

method to better exploit existing style classification data and group funds into 

representative style portfolios that identify meaningful style clienteles. Then, we explore 

the economic properties of the marginal style preferences extracted from our approach.  

Finally, we use these implied preferences in a clientele-specific performance evaluation of 

individual mutual funds. 
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1.3.2 Objectives and Contributions 

The aim of this thesis is to present three essays allowing: 

 To improve the performance evaluation of mutual funds by accounting for investor 

disagreement and focusing on the best potential clienteles. Using asset pricing 

bounds, we propose, develop and implement a measure of mutual fund performance 

from the point of view of the most favorable classes of investors. The results 

contribute to the previously reviewed literatures on performance evaluation 

approaches, the value added by active management, heterogeneous preferences and 

investor disagreement in mutual funds. They provide an answer to Ferson’s (2010) 

challenge to implement a performance measure specific to clienteles.  

 To formally compare the evaluations from the best clientele performance measure 

with those from standard performance measures implicitly based on representative 

investors. Using this comparison as a diagnostic tool, we document whether the 

inadmissibility and misrepresentation problems are important issues for candidate 

performance measures. The results contribute to the previously reviewed literatures 

on the benchmark choice problem, the comparison of performance measures with 

simulations and heterogeneous preferences and investor disagreement in mutual 

funds. In particular, they give an examination of the validity of standard measures 

using an approach different from the simulation-based methods proposed in the 

literature. The results also contribute to the manipulation proof performance 

measure literature because we provide a new estimation strategy that allows 

statistical inferences on the significance of the manipulation proof performance 

values.  

 To improve the performance evaluation of mutual funds by implicitly considering 

the preferences of clienteles favorable to different equity investment styles. We 

implement clientele-specific performance measures and explore how different are 

the preferences and evaluations of investors attracted to various fund styles. The 

results contribute to the previously reviewed literatures on performance evaluation 

approaches, the benchmark choice problem, heterogeneous preferences and investor 

disagreement, and mutual fund styles. In particular, we provide supporting evidence 
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for the conjecture of Ferson (2010) that clientele-specific measures based on 

meaningful investor clienteles might be necessary to properly evaluate mutual 

funds. We also contribute to the mutual fund style literature by developing a new 

style classification method to better exploit existing objective code data and account 

for code changes and missing codes.  

1.4 The Best Clientele Performance Evaluation Approach 

The performance approach developed in this thesis starts by measuring the performance, or 

alpha, with the stochastic discount factor (SDF) approach such that:  

(1) 𝛼𝑀𝐹 = 𝐸[𝑚 𝑅𝑀𝐹] − 1, 

where 𝑚 is the SDF of an investor interested in valuing the mutual fund with return 𝑅𝑀𝐹. 

Glosten and Jagannathan (1994) and Chen and Knez (1996) are the first to propose the SDF 

alpha for performance evaluation. Ferson (2010) summarizes its benefits.   

 We then impose an economically relevant structure on the set of SDFs of all 

investors to obtain a restricted set useful to identify the most favorable performance. Let 𝑀 

represents this restricted set. Under the assumption that this set is constrained enough to be 

closed and convex, Chen and Knez (1996) and Ahn, Chrétien and Cao (2009) demonstrate 

that it is possible to find an upper bound on the performance of a fund:  

(2) 𝛼̅𝑀𝐹 = 𝑠𝑢𝑝
𝑚∈𝑀

𝐸[𝑚 𝑅𝑀𝐹] − 1, 

where 𝛼̅𝑀𝐹 represents the upper bound on the alpha, i.e., the highest average performance 

value that can be found from the heterogeneous investors considered.  

 By considering a set of SDFs, as opposed to selecting a unique SDF, our setup 

results in a finite range of performance values (see Chen and Knez (1996) and Ahn, 

Chrétien and Cao (2009)). Hence, it allows for investor disagreement that can occur in an 

incomplete market (Chen and Knez (1996) and Ferson and Lin (2014)). One key to our 
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approach is restricting the set 𝑀 of SDFs in an economically meaningful way. We impose 

two insightful conditions that the SDFs of mutual fund investors should meet: the law-of-

one-price and no-good-deal conditions.  

 The law-of-one-price condition is discussed extensively by Hansen and Jagannathan 

(1991) and states that the SDFs used for performance measurement should correctly price 

passive portfolios or basis assets:  

(3) 𝐸[𝑚 𝐑𝐊] − 𝟏 = 0, 

where 𝐑𝐊 is a vector of returns on 𝐾 passive portfolios, and 1 is a 𝐾 × 1 unit vector. It is 

plausible to assume that mutual fund investors would agree that passively-managed 

portfolios should have zero average alphas. The main benefit of imposing the law-of-one-

price condition is to alleviate the previously mentioned benchmark choice problem.  

 Although the law-of-one-price condition provides important restrictions on the set 

of SDFs, it is not sufficient to make it closed and convex, and thus would allow an infinite 

range of performance values, as discussed in Chen and Knez (1996). The second condition 

resolves this issue. The no-good-deal condition of Cochrane and Saá-Requejo (2000) states 

that the SDFs used for performance measurement should not allow investment 

opportunities with Sharpe ratios that are too high:  

(4) 
𝐸[𝑅𝑗 − 𝑅𝐹]

𝜎[𝑅𝑗 − 𝑅𝐹]
< ℎ, 

where 𝑅𝑗 is the return on any potential asset j, ℎ is the maximum Sharpe ratio allowable and 

𝑅𝐹 is the risk-free rate. We thus stipulate that mutual fund investors would find it 

implausible that investment opportunities could provide Sharpe ratios that are too high, 

making them good deals (see Ross (1976), MacKinlay (1995), Cochrane and Saá-Requejo 

(2000) and Ross (2005)).  
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 By extension of the analysis of Hansen and Jagannathan (1991), Cochrane and Saá-

Requejo (2000) demonstrate that the law-of-one-price and no-good-deal conditions restrict 

the set 𝑀 of SDFs for mutual fund investors by limiting their variability:  

(5) 
ℎ∗

𝑅𝐹
≤ 𝜎(𝑚) ≤

ℎ̅

𝑅𝐹
, 

where ℎ∗ is the optimal Sharpe ratio attainable from the passive portfolios. Intuitively, we 

can interpret the SDFs as representing the marginal preferences of mutual fund investors. 

This restriction stipulates that the variability of managerial utilities should be large enough 

to correctly price existing passive portfolios, but small enough to rule out implausibly high 

risk aversion that would allow good deals be viable.  

Cochrane and Saá-Requejo (2000) also show that this restriction makes the set of 

SDFs closed and convex, and thus allows for finite price bounds. The approach developed 

in this thesis adopts their framework to performance measurement. Specifically, we obtain 

an upper bound on performance evaluation that we call the “best clientele performance 

evaluation or alpha”. The best clientele alpha possesses an analytical solution that has 2𝐾 +

2 parameters to estimate, where 𝐾 is the number of passive portfolios used to impose the 

law-of-one-price condition. The closed-form solution can be estimated with the generalized 

method of moments of Hansen (1982). 

1.5 Conclusion 

There is a large and still growing literature on mutual fund performance evaluation. In this 

chapter, we introduce the general issues motivating this thesis, present its main research 

questions, objectives and contributions, and provide an overview of the best clientele 

performance approach it develops.  

The rest of the thesis is divided as follow. In chapter 2, essay 1 provides the first 

comprehensive performance evaluation exercise for best potential clienteles of mutual 

funds. In chapter 3, essay 2 focuses on a new diagnostic tool for candidate performance 

models and its associated inadmissibility and misrepresentation problems. In chapter 4, 
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essay 3 develops clientele-specific performance measures based on the style preferences of 

mutual fund investors. The last chapter offers concluding remarks.  
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2 Mutual Fund Performance Evaluation and Best Clienteles 

 

 

Abstract 

This paper investigates investor disagreement and clientele effects in performance 

evaluation by developing a measure that considers the best potential clienteles of mutual 

funds. In an incomplete market under law-of-one-price and no-good-deal conditions, we 

obtain an upper bound on admissible performance measures that identifies the most 

favorable alpha. Empirically, we find that a reasonable investor disagreement leads to 

generally positive performance for the best clienteles. Performance disagreement by 

investors can be significant enough to change the average evaluation of mutual funds from 

negative to positive, depending on the clienteles. 
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Résumé 

Cet article étudie le désaccord entre investisseurs et les effets de clientèle dans l’évaluation 

de performance en développant une mesure qui considère les meilleures clientèles 

potentielles des fonds mutuels. Dans un marché incomplet sous conditions de la loi d’un 

seul prix et d’absence de bonnes affaires, nous obtenons une borne supérieure sur les 

mesures de performance admissibles qui identifie l’alpha le plus favorable. Empiriquement, 

nous trouvons qu’un désaccord raisonnable entre investisseurs résulte en une performance 

généralement positive pour les meilleures clientèles.  Le désaccord entre investisseurs peut 

être suffisamment significatif pour changer l’évaluation moyenne des fonds mutuels de 

négative à positive, dépendamment des clientèles.     
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2.1 Introduction 

In today’s mutual fund industry, there are thousands of funds that cater to different 

investors through their management style and other attributes. In incomplete markets, as 

investors can disagree about the attractiveness of funds, this catering might be worthwhile 

in leading the funds to find appropriate clienteles, i.e., the class of investors to whom they 

are the most valuable.  

Recent research examines the effect of investor disagreement and heterogeneity on 

mutual fund performance evaluation. Studying the issue generally, Ferson and Lin (2014) 

find that taking into account heterogeneous preferences can lead to large valuation 

disagreement. In particular, they develop a bound on expected disagreement with a 

traditional alpha and show that such disagreement can be similar in importance to the 

widely documented effects of the benchmark choice problem and the statistical imprecision 

in estimates of alpha. They furthermore provide evidence that investor disagreement and 

heterogeneity are economically significant in the behavior of fund investors.  

Many studies concentrate more specifically on identifying specific clienteles. Glode 

(2011) argues that mutual funds could be valuable to investors with high marginal utilities 

in difficult times by providing positive alphas in recessions. Bailey, Kumar and Ng (2011) 

document that behavioral biases are factors of investor heterogeneity in the mutual fund 

industry. Del Guercio and Reuter (2014) find that the retail mutual fund market is formed 

from two broad clienteles that value funds differently: self-directed investors and investors 

acting with the help of brokers. In a literature review, Ferson (2010) emphasizes that 

measuring performance from the point of view of different clienteles is a challenge for 

future research.  

Despite these contributions, the literature has not focused on the valuation that can 

be the most important for mutual funds, the one from their best potential clienteles. The 

goal of this paper is to provide additional evidence on investor disagreement and clientele 

effects in performance evaluation by developing and implementing a measure that 

considers the best potential clienteles of mutual funds. For our purpose, these clienteles are 

defined as the class of investors most favorable to a fund in the sense that they value the 



 

26 

fund at an upper performance bound in a setup where the market is incomplete. Our “best 

clientele performance measure” thus not only considers investor disagreement but also 

focuses on the most worthy clienteles that a mutual fund could target.  

We develop this new measure by combining the asset pricing bound literature with 

the stochastic discount factor (SDF) performance evaluation approach first proposed by 

Glosten and Jagannathan (1994) and Chen and Knez (1996). Specifically, Cochrane and 

Saá-Requejo (2000) propose asset pricing bounds in an incomplete market under the law-

of-one-price condition of Hansen and Jagannathan (1991) and a no-good-deal condition 

that rules out investment opportunities with unreasonably high Sharpe ratios, termed “good 

deals”. We obtain the best clientele alpha by adapting this approach to portfolio 

performance measurement and focusing on the upper performance bound. 

Using Hansen’s generalized method of moments (1982), we estimate the best 

clientele SDF alphas with monthly returns of 2786 actively managed U.S. open-ended 

equity mutual funds from January 1984 to December 2012. Our main results rely on a set of 

passive portfolios based on ten industry portfolios, although they are similar for style 

portfolios or the market portfolio. Following the literature, they consider the disagreement 

generated by allowing a maximum Sharpe ratio (specifying the no-good-deal restriction) 

equal to the best Sharpe ratio from the passive portfolios plus either half the Sharpe ratio of 

the market index or its full value.  

Empirically, we find that considering investor disagreement and focusing on the 

best potential clienteles lead to a generally positive performance for mutual funds. For 

example, with a disagreement that corresponds to an increase in admissible opportunities 

equivalent to half the market Sharpe ratio, the mean monthly best clientele alpha is equal to 

0.236% (t-stat. = 3.35). Comparatively, the mean alpha when disagreement is ruled out is -

0.179% (t-stat. = -3.14), a value similar to the findings from standard measures based on 

representative investors. The spread of 0.415% between these values is comparable to the 

magnitude of the bound on the average disagreement documented by Ferson and Lin 

(2014). Accordingly, the proportions of positive and significantly positive alpha estimates 

increase from 20% to 78% and from 1% to 24%, respectively, when allowing for 

disagreement. To account for false discoveries, we implement the technique of Barras, 
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Scaillet and Wermers (2010) and its extension proposed by Ferson and Chen (2015). For 

the best clienteles, we find that the proportions of skilled funds increase considerably, and 

the proportions of unskilled funds disappear.  

Further augmenting the maximum Sharpe ratio improves even more the 

performance of the mutual funds for their best clienteles, and the results are robust to the 

use of simulated finite sample distributions for inference purposes. In addition, we show 

that increasing monthly Sharpe ratio opportunities by only 0.04 (approximately one third of 

the market Sharpe ratio) is sufficient for the best clienteles to give a nonnegative 

performance to mutual funds on average. Hence, although the maximum Sharpe ratio is a 

subjective choice, our findings indicate that a reasonably small disagreement among 

investors is enough to generate a positive performance from the best potential clienteles of 

a majority of funds. 

We also implement a conditional version of the best clientele measure and find that 

the inclusion of conditioning information does not alter our findings. Consistent with 

Moskowitz (2000), Kosowski (2011) and Glode (2011), we find evidence that the best 

clientele alpha estimates are more positive in recessions than in expansions. Finally, to 

further explore the issues of investor disagreement and clientele effects, we estimate a 

lower performance bound to obtain a “worst clientele alpha” and investigate the total 

performance disagreement resulting from the difference between best and worst clientele 

alphas. We find that the evidence from the worst clienteles is more negative than the one 

from standard measures and that total disagreement is economically and statistically 

significant.  

Overall, the positive best clientele alpha estimates documented in this paper have 

two important implications for the mutual fund literature. First, as shown by Chen and 

Knez (1996) and Ferson and Lin (2014), a positive SDF alpha is required for the existence 

of investors who would want to buy a fund. However, a large number of studies document 

negative value added for actively managed mutual funds (see Fama and French (2010) and 

Barras, Scaillet and Wermers (2010) for recent examples), with the growth of the industry 

termed a “puzzle” by Gruber (1996). In line with the continued popularity of these funds in 
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practice, this paper empirically shows that a positive alpha exists for some clienteles for 

most funds.  

Second, although the effects of the benchmark choice problem and the statistical 

imprecision in estimates of alpha can change the performance assessment of a fund, these 

issues do not generally change the conclusion regarding the negative value added for the 

mutual fund industry. This paper shows that investor disagreement can be significant 

enough to change the average evaluation of mutual funds from negative to positive, 

depending on the clienteles. It thus reinforces the analysis of Ferson and Lin (2014) on the 

economic importance of investor disagreement and clientele effects.  

The remainder of this paper is organized as follows. Section 2.2 develops the best 

clientele performance measure. Section 2.3 presents our methodology for estimating 

performance values and summarizing the results. Section 2.4 describes the mutual fund data 

and the passive portfolio returns. Section 2.5 presents and interprets our empirical results. 

Finally, section 2.6 concludes.  

2.2 Performance Measure for the Best Potential Clienteles 

2.2.1 Basic Performance Setup 

Our approach starts by measuring the performance, or alpha, with the stochastic discount 

factor (SDF) approach such that:  

(1) 𝛼𝑀𝐹,𝑡 = 𝐸𝑡[𝑚𝑡+1𝑅𝑀𝐹,𝑡+1] − 1, 

where 𝑚𝑡+1 is the SDF of an investor interested in valuing the mutual fund with gross 

return 𝑅𝑀𝐹,𝑡+1, and the expectation operator 𝐸𝑡[ ] is understood to be conditional on the 

investor’s or the public information set. Taking the unconditional expectation on both sides, 

and dropping time subscripts except when needed to avoid ambiguity, the expected alpha is 

given by: 
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(2) 𝛼𝑀𝐹 = 𝐸[𝑚 𝑅𝑀𝐹] − 1. 

 Glosten and Jagannathan (1994) and Chen and Knez (1996) were the first to 

propose SDF alphas for performance evaluation. The SDF approach does not require any 

assumptions about complete markets, utility functions or aggregation. In the context of 

performance evaluation, Ferson (2010) argues that it is general enough to properly account 

for heterogeneous investors and differentially informed managers. In contrast, for a 

traditional regression-based alpha, a positive (negative) value does not necessarily imply 

buying (selling) the fund, and a manager with superior information does not necessarily 

generate a positive value. Ferson (2010, p. 227) thus concludes that « the SDF alpha seems 

to be on the most solid theoretical footing, and should probably get more attention than it 

has in the literature ».  

 Unfortunately, the SDFs of different investors are not observable. Hence, the 

literature typically uses the SDF from a representative investor obtained through economic 

assumptions and equilibrium conditions. This approach provides a unique performance 

evaluation that can be relevant for all investors. However, it rules out investor disagreement 

that occurs when one client views the performance of a fund differently from another client 

(see Ferson and Lin (2014)). Furthermore, it exposes the results to the benchmark choice 

problem because the selected performance model does not necessarily price correctly 

passive portfolios (see Chen and Knez (1996), Ahn, Cao and Chrétien (2009) and Cremers, 

Petajisto and Zitzewitz (2013)).    

 Instead, in this paper, we impose an economically relevant structure on the set of 

SDFs of all investors to obtain a restricted set useful to identifying the most favorable 

performance. Let 𝑀 represent this restricted set. Under the assumption that it is constrained 

enough to be closed and convex, Chen and Knez (1996) and Ahn, Chrétien and Cao (2009) 

demonstrate that it is possible to find an upper bound on the performance of a fund:  

(3) 𝛼̅𝑀𝐹 = 𝑠𝑢𝑝
𝑚∈𝑀

𝐸[𝑚 𝑅𝑀𝐹] − 1 
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where 𝛼̅𝑀𝐹 represents the upper bound on the expected alpha, the highest average 

performance value that can be found from the heterogeneous investors considered in 𝑀.  

 By considering a set of SDFs, as opposed to selecting a unique SDF, our setup 

results in a finite range of performance values (see Chen and Knez (1996) and Ahn, 

Chrétien and Cao (2009)). Hence, it allows for investor disagreement that can occur in 

incomplete market. As argued by Chen and Knez (1996, p. 529), “given that mutual funds 

are set up to satisfy different clienteles, such an evaluation outcome may not be 

unrealistic”. Empirically, the results of Ferson and Lin (2014) suggest that investor 

disagreement is in fact economically important. Although we also provide some results for 

the lower bound, we focus on the upper bound because it can be interpreted as the 

performance from the class of investors most favorable to the mutual fund (in a valuation 

sense). It is thus possible to evaluate whether mutual funds add value from the perspective 

of their best potential clienteles. In particular, Chen and Knez (1996) and Ferson and Lin 

(2014) show that if this value is positive, there are some investors who would want to buy the 

fund, with an optimal investment proportional to the alpha.  

2.2.2 Restricting the Stochastic Discount Factors 

One key to our approach is restricting the set of SDFs in an economically meaningful way. 

We impose two conditions that the SDFs of mutual fund investors should meet. The first 

condition is the law-of-one-price condition, as discussed by Hansen and Jagannathan 

(1991): The SDFs used for performance measurement should price correctly passive 

portfolios or basis assets:  

(4) 𝐸[𝑚 𝐑𝐊] − 𝟏 = 0, 

where 𝐑𝐊 is a vector of gross returns on 𝐾 passive portfolios, and 𝟏 is a 𝐾 × 1 unit vector. 

It is plausible to assume that mutual fund investors would agree that passively managed 

portfolios should have zero average alphas. The main benefit of imposing the law-of-one-

price condition is to alleviate the previously mentioned benchmark choice problem. To see 

how this condition restricts the set of SDFs for investors, Hansen and Jagannathan (1991) 
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provide the best known bound by showing that it implies a minimum SDF standard 

deviation that is related to the highest Sharpe ratio attainable in the passive portfolios.1  

 Although the law of one price provides important restrictions on the set of SDFs, it 

is not sufficient to make it closed and convex and thus would allow an infinite range of 

performance values, as discussed in Chen and Knez (1996). The second condition we 

impose is the no-good-deal condition of Cochrane and Saá-Requejo (2000). Specifically, 

the SDFs should not allow investment opportunities with Sharpe ratios that are too high:  

(5) 
𝐸[𝑅𝑗 − 𝑅𝐹]

𝜎[𝑅𝑗 − 𝑅𝐹]
< ℎ̅, 

where 𝑅𝑗 is the return on any potential asset j, ℎ̅ is the maximum Sharpe ratio allowable, 

and 𝑅𝐹 is the risk-free rate. We thus stipulate that investors would find it implausible that 

investment opportunities could provide Sharpe ratios that are too high, making them good 

deals. If available, these deals would be unlikely to survive because investors would 

quickly grab them up.  

  The reasons why high Sharpe ratios should be ruled out are discussed by Ross 

(1976), MacKinlay (1995), Cochrane and Saá-Requejo (2000) and Ross (2005), among 

others. Ross (1976) argues that Sharpe ratios that are too high (more than twice the market 

Sharpe ratio) are unreasonable from the perspective of the CAPM and thus rules them out 

in studying deviations from the arbitrage pricing theory. In developing a specification test 

for multifactor models, MacKinlay (1995) uses a bound on the maximum Sharpe ratio, 

arguing that high ratios are unlikely from the perspective of risk-based models. Cochrane 

and Saá-Requejo (2000) argue that implausibly high Sharpe ratio opportunities should be 

rapidly exploited by investors. Unless there are limits to exploiting them, their presence 

would imply implausibly high investor risk aversion. A similar argument is formalized in 

Ross (2005).  

                                                 
1Other restrictions on SDFs that can be developed from this condition include, for examples, the bounds of 

Snow (1991) on selected higher SDF moments and the bound of Chrétien (2012) on the SDF autocorrelation.  
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 By extension of the analysis of Hansen and Jagannathan (1991), Cochrane and Saá-

Requejo (2000) demonstrate that the no-good-deal condition restricts the set of SDFs for 

mutual fund investors by limiting its second moment:  

(6) 𝐸[𝑚2] ≤  
(1 + ℎ̅2)

𝑅𝐹
2 . 

Put differently, the assumption that investors would necessarily want to take part at 

the margin in implausibly good deals implies that their SDF satisfies the restriction 𝜎[𝑚] ≤

ℎ̅ 𝑅𝐹⁄ . As shown by Cochrane and Saá-Requejo (2000), this restriction and the law-of-one-

price condition make the set of SDFs closed and convex and thus allow the existence of 

price bounds.  

 There are other restrictions that could be imposed on SDFs to result in price 

bounds.2 In this paper, we select the no-good-deal condition for the following reasons. 

First, since being introduced by Sharpe (1966), the Sharpe ratio has a long history of 

relevancy in performance evaluation. Due to its simplicity and intuitive appeal, it is a 

commonly used measure both in practice and in academic studies. Second, the literature 

offers some guidance on the choice of the maximum Sharpe ratio. In contrast, there is little 

guidance for the maximum gain-loss ratio, and there are often not enough restrictions 

imposed by the no-arbitrage condition (so no-arbitrage bounds are typically wide). Third, 

the Sharpe ratio captures approximate arbitrage opportunities as well as the gain-loss ratio 

when returns are normally distributed, which is reasonable for our sample of monthly 

equity mutual fund returns.3 Fourth, the no-good-deal framework offers a closed-form 

                                                 
2For example, Hansen and Jagannathan (1991) discuss the no arbitrage condition that excludes non-positive 

SDFs by ruling out arbitrage opportunities. They show that it restricts further the set of SDFs by increasing 

the SDF volatility bound. Chen and Knez (1996) show that it is sufficient to obtain a finite range of 

performance values, and Ahn, Cao and Chrétien (2009) study no arbitrage performance bounds for mutual 

funds. As an alternative, Bernardo and Ledoit (2000) introduce a maximum gain-loss ratio condition that rules 

out approximate arbitrage opportunities. They show that the condition leads to a restriction on the minimum 

and maximum SDF values.  
3See, for example, the results of Koski and Pontiff (1999) that most equity mutual funds do not use 

derivatives and that the distributional characteristics of users and non-users are similar, with monthly 

skewness and excess kurtosis that are relatively close to zero.  
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solution for the performance bounds. This solution facilitates and accelerates its 

implementation in comparison to numerical-only solutions obtained when imposing the no 

arbitrage condition or the maximum gain-loss ratio condition. This advantage should not be 

neglected given that our large-scale empirical investigation considers thousands of mutual 

funds.4  

2.2.3 Best Clientele Performance Measure 

Considering our basic performance setup and our restrictions on the set of SDFs, the upper 

bound on performance evaluation can be found by solving the following problem:  

(7) 𝛼̅𝑀𝐹 = 𝑠𝑢𝑝
𝑚∈𝑀

𝐸[𝑚 𝑅𝑀𝐹] − 1, 

(8) subject to 𝐸[𝑚 𝐑𝐊] = 𝟏, 𝐸[𝑚2] ≤  
(1+ℎ̅2)

𝑅𝐹
2 . 

Cochrane and Saá-Requejo (2000) show that this problem has the following solution:  

(9) 𝛼̅𝑀𝐹 = 𝐸[𝑚̅𝑅𝑀𝐹] − 1, 

with:  

(10) 𝑚̅ = 𝑚∗ + 𝑣𝑤 

(11) 𝑚∗ = 𝐚′𝐑𝐊 

                                                 
4It is also possible to impose many conditions simultaneously. For example, Cochrane and Saá-Requejo 

(2000) consider the no good-deal condition and the no arbitrage condition jointly. In section 2.5.1, we 

examine empirically if the no arbitrage condition represents a binding constraint for the SDFs considered in 

this paper. We find the SDFs are almost always positive. Hence, we conclude that the no arbitrage condition 

does not provide a meaningful empirical restriction in our sample and do not consider it further.  
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(12) 𝑤 = 𝑅𝑀𝐹 − 𝐜′𝐑𝐊, 

where: 

(13) 𝐚′ = 𝟏′𝐸[𝐑𝐊 𝐑𝐊
′ ]−1 

(14) 𝐜′ = 𝐸[𝑅𝑀𝐹 𝐑𝐊
′ ] 𝐸[𝐑𝐊 𝐑𝐊

′ ] −1 

(15) 
𝑣 =

√
(

(1 + ℎ̅2)

𝑅𝐹
2 − 𝐸[𝑚∗2])

𝐸[𝑤2]
. 

 

 We call the solution 𝛼̅𝑀𝐹 the “best clientele alpha” to refer to our earlier discussion; 

it indicates whether mutual funds add value from the perspective of their best potential 

clienteles, the class of investors most favorable to the mutual fund. Similarly, 𝑚̅ represents 

the “best clientele SDF”. In this solution, 𝑚∗ is the SDF identified by Hansen and 

Jagannathan (1991) as having minimum volatility under the law-of-one-price condition. It 

is a linear function of the passive portfolio returns 𝐑𝐊. The error term 𝑤 represents the 

difference between the mutual fund return 𝑅𝑀𝐹 and the best “hedging” or “replicating” 

payoff 𝐜′𝐑𝐊 that can be obtained from passive portfolio returns. Hence, 𝑤 is the part of the 

mutual fund return that is not spanned by passive portfolio returns. Finally, 𝑣 is the 

parameter that accounts for the no-good-deal restriction and is a function of the maximum 

Sharpe ratio ℎ̅.   

 We can further economically understand the solution by rewriting it as follows:  

(16) 𝛼̅𝑀𝐹 = 𝐸[𝑚∗𝑅𝑀𝐹] − 1 + 𝑣 𝐸[𝑤2]. 
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This equation shows that the best clientele alpha can be decomposed into two parts. 

The first part, 𝐸[𝑚∗𝑅𝑀𝐹] − 1, is the law-of-one-price (LOP) alpha developed by Chen and 

Knez (1996), based on the minimum volatility SDF. Similar to the best clientele 

performance measure, the LOP measure gives zero performance to passive portfolios by 

construction and thus does not suffer from the benchmark choice problem. It has also been 

used by Dahlquist and Söderlind (1999), Farnsworth, Ferson, Jackson and Todd (2002), and 

Ahn, Cao and Chrétien (2009), among others.  

 The second part, 𝑣 𝐸[𝑤2], can be viewed as the investor disagreement between the 

best clientele alpha and the LOP alpha. This disagreement can come from two distinct 

sources: the replication error 𝑤 and the maximum Sharpe ratio restriction ℎ̅. With regard to 

the first source, if the passive portfolios perfectly span the mutual fund return, so that 𝑤 =

0, then there can be no disagreement in evaluation. Otherwise, as the expected squared 

replication error for a fund becomes larger, such that it becomes tougher for investors to get 

the « same type » of opportunities from passive portfolios, then the potential disagreement 

among investors becomes greater. With regard to the second source, if the maximum 

Sharpe ratio allowed corresponds to the highest Sharpe ratio attainable in the passive 

portfolios, such that ℎ̅ = ℎ∗ and 𝐸[𝑚̅2] = 𝐸[𝑚∗2], then there is no valuation disagreement 

because 𝑣 = 0. In this case, no opportunity better than the ones from passive portfolios is 

deemed reasonable by investors. Otherwise, as the additional opportunities that investors 

would find admissible (i.e., not consider good deals) increase, as specified by a larger 

difference ℎ̅ − ℎ∗, the potential disagreement among investors increases. 

 Finally, it is also possible to develop a conditional version of the best clientele 

performance evaluation by following the scaled payoffs strategy of Chen and Knez (1996) 

and Ferson, Henry and Kisgen (2006), among others. Specifically, we form public 

information-managed payoffs, denoted by 𝐑𝐙, by multiplying passive returns with lagged 

publicly available information variables, denoted by 𝐙. Let 𝟏𝐙 be the corresponding prices 

of these payoffs, obtained by multiplying the unit vector by the lagged publicly available 

information variables. Then, a conditional estimation of the best clientele alpha is obtained 

by replacing 𝐑𝐊 in the previous solution with 𝐑𝐊
𝐀, an augmented set of assets that includes 

both 𝐑𝐊 and 𝐑𝐙, and by replacing the unit vector 𝟏 with 𝟏𝐀, which contains both 𝟏 and 𝟏𝐙.   
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2.3 Methodology  

2.3.1 Estimation 

The solution for the best clientele performance evaluation measure necessitates the 

estimation of 2𝐾 + 1 parameters for 𝑚̅ (𝐚, 𝐜, 𝑣), along with the alpha (𝛼̅𝑀𝐹). These 

parameters can be estimated and tested for significance using Hansen’s generalized method 

of moments (GMM; 1982). For a sample of 𝑇 observations, we rely on the following 2𝐾 +

2 moments: 

(17) 
1

𝑇
∑[(𝐚′𝐑𝐊𝐭)𝐑𝐊𝐭] − 𝟏 = 0

𝑇

𝑡=1

, 

(18) 
1

𝑇
∑[(𝑅𝑀𝐹𝑡 − 𝐜′𝐑𝐊𝐭)𝐑𝐊𝐭] = 0,

𝑇

𝑡=1

 

(19) 
1

𝑇
∑[(𝐚′𝐑𝐊𝐭) + 𝑣(𝑅𝑀𝐹𝑡 − 𝐜′𝐑𝐊𝐭)]2 −

(1 + ℎ
2

)

𝑅𝐹
2

𝑇

𝑡=1

= 0, 

(20) 
1

𝑇
∑[(𝐚′𝐑𝐊𝐭 + 𝑣(𝑅𝑀𝐹𝑡 − 𝐜′𝐑𝐊𝐭))𝑅𝑀𝐹𝑡]

𝑇

𝑡=1

− 1 − 𝛼̅𝑀𝐹 = 0. 

 The 𝐾 moments in equation (17) allow for the estimation of the LOP SDF, 𝑚𝑡
∗ =

𝐚′𝐑𝐊𝐭, by ensuring that it correctly prices 𝐾 passive portfolio returns. The 𝐾 moments in 

equation (18) represent orthogonality conditions between the replication error term, 𝑤𝑡 =

𝑅𝑀𝐹𝑡 − 𝐜′𝐑𝐊𝐭, and passive portfolio returns, which are needed to estimate the coefficients 𝐜 

in the best replicating payoff 𝐜′𝐑𝐊𝐭. The moment in equation (19) imposes the no-good-deal 

condition to estimate the parameter 𝑣, which is restricted to be positive to obtain an upper 

bound. In this moment, 𝑅𝐹 represents a risk-free rate equivalent and is simply set to one 

plus the average one-month Treasury bill return in our sample, which is 0.3393%. For 
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consistency, we also include this one-month Treasury bill return as one of the passive 

portfolio returns so that the estimated mean SDF is similar to 1 𝑅𝐹⁄ . Finally, using the 

estimated best clientele SDF, 𝑚𝑡 = 𝑚𝑡
∗ + 𝑣𝑤𝑡, we obtain the upper performance bound for 

a mutual fund using the moment specified by equation (20). 

For comparison with the best clientele alpha, we also examine the LOP performance 

measure of Chen and Knez (1996), which is based on the SDF with the lowest volatility. 

Specifically, the LOP alpha can be estimated with the following additional moment:  

(21) 
1

𝑇
∑[(𝐚′𝐑𝐊𝐭)𝑅𝑀𝐹𝑡]

𝑇

𝑡=1

− 1 − 𝛼𝐿𝑂𝑃 = 0. 

To estimate a conditional best clientele alpha that varies according to publicly 

available information, we can use the augmented sets of payoffs and prices defined in 

section 2.2.3 to replace 𝐑𝐊𝐭 with 𝐑𝐊𝐭
𝐀  and 𝟏 with 𝟏𝐭−𝟏

𝐀  in equations (17), (18) and (19) and 

substitute the moment in equation (20) with the following moments:  

(22) 
1

𝑇
∑ [(𝐚′𝐑𝐊𝐭

𝐀 + 𝑣(𝑅𝑀𝐹𝑡 − 𝐜′𝐑𝐊𝐭
𝐀 )) 𝑅𝑀𝐹𝑡]

𝑇

𝑡=1

− 1 − (𝛼̅𝑀𝐹0 + 𝛂̅𝐌𝐅𝟏′𝐙𝐭−𝟏) = 0.  

(23) 
1

𝑇
∑ [(𝐚′𝐑𝐊𝐭

𝐀 + 𝑣(𝑅𝑀𝐹𝑡 − 𝐜′𝐑𝐊𝐭
𝐀 )) 𝐑𝐌𝐅𝐙𝐭]

𝑇

𝑡=1

− 𝟏𝐙𝐭−𝟏 − (𝛼̅𝑀𝐹0 + 𝛂̅𝐌𝐅𝟏′𝐙𝐭−𝟏) = 0. 

These moments use a scaled version of the mutual fund return, 𝐑𝐌𝐅𝐙𝐭 = 𝑅𝑀𝐹𝑡 ×

𝐙𝐭−𝟏, with its associated price 𝟏𝐙𝐭−𝟏 = 1 × 𝐙𝐭−𝟏, to estimate a conditional best clientele 

alpha that is linear in the information variables and given by 𝛼̅𝑀𝐹0 + 𝛂̅𝐌𝐅𝟏′𝐙𝐭−𝟏.  

In all cases, the estimation system is just identified because the number of parameters is 

equal to the number of moments. Hence, the parameter estimates are not influenced by the 

choice of weighting matrix in GMM. Furthermore, although the system is estimated for one 
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fund at a time, Farsnworth, Ferson, Jackson and Todd (2002) show that this strategy 

produces the same point estimates and standard errors for alpha as estimating a system that 

includes an arbitrary number of funds.5 Finally, the statistical significance of the parameters 

is assessed with standard errors adjusted for conditional heteroskedasticity and serial 

correlation using the method of Newey and West (1987) with two lags.6  

2.3.2 Maximum Sharpe Ratio Choice 

To implement the best clientele performance measure, two choices are particularly 

important: passive portfolios and the maximum Sharpe ratio. In the data section, we 

introduce three different sets of passive portfolios to assess the sensitivity of the results to 

this choice. This section discusses the maximum Sharpe ratio choice, which we base on the 

existing literature.  

In general, the literature shows that researchers typically impose a subjective 

constraint on the maximum Sharpe ratio. One early contribution is Ross (1976). To study 

deviations from the arbitrage pricing theory, he imposes a maximum Sharpe ratio of twice 

the market Sharpe ratio, leading to a value of 0.25. Considering that the market portfolio 

should according to the CAPM have the highest Sharpe ratio, he argues that this restriction 

should reasonably account for all attainable Sharpe ratios. With a related argument that 

high Sharpe ratios are unlikely from the perspective of risk-based models, MacKinlay 

(1995) considers that a squared annual Sharpe ratio higher than approximately 0.6 is 

implausibly high.  

In applying their no-good-deal bounds to S&P 500 option pricing, Cochrane and 

Saá-Requejo (2000) select the maximum Sharpe ratio by ruling out opportunities with a 

Sharpe ratio greater than twice that of the S&P 500 (or, equivalently, twice the Sharpe ratio 

of their basis asset). They explain that this choice is not definitive and can be changed. Pyo 

                                                 
5 Ferson, Kisgen and Henry (2007) demonstrate that this result also holds in the case of a time-varying alpha.  
6 We choose two lags to control for the non-zero serial correlation in monthly returns of a significant fraction 

of funds, which might invest in thinly traded stocks. For example, Ferson and Chen (2015, Table 1) report a 

median serial correlation of 0.12, with 25% of funds having a serial correlation greater than 0.19, potentially 

due to microstructure effects like non synchronous trading (Lo and MacKinlay (1990)). As a robustness 

check, we also reproduce the results of Table 2.3 by using no lag or four lags and find similar results.  
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(2011) uses the same assumption in his empirical study. Huang (2013) develops an upper 

bound on the R-squared of predictive regressions using the no-good-deal approach and also 

picks twice the market Sharpe ratio as maximum ratio. Floroiu and Pelsser (2013) price real 

options using no-good-deal bounds and similarly calibrate their bounds using twice the 

Sharpe ratio of the S&P 500. A few papers consider different values of the maximum 

Sharpe ratio. Kanamura and Ohashi (2009) use values ranging from two to three times the 

value of the market Sharpe ratio to find upper and lower bounds for summer day options. 

Martin (2013) provides upper bounds on risk aversion using the no-good-deal approach and 

calibrates his bounds with three different values for the maximum annual Sharpe ratio, i.e., 

0.75, 1 and 1.25.  

 Overall, although the maximum Sharpe ratio is somewhat subjectively specified, the 

literature offers some guidance on its selection. The most common choice is a maximum 

Sharpe ratio of twice the one of the underlying basis assets (which oftentimes include only 

an equity index). This choice can also be seen as adding the market Sharpe ratio to the 

maximum Sharpe ratio of the basis assets. In this paper, we follow this guidance by adding 

to the attainable Sharpe ratio of our passive portfolios a value of 0.1262, corresponding to 

the monthly Sharpe ratio of the market index (the CRSP value-weighted index) in our 

sample. We denote this choice by ℎ̅ = ℎ∗ + ℎ𝑀𝐾𝑇. More conservatively, we also consider 

adding half of this value as additional allowable opportunities, so that ℎ̅ = ℎ∗ + 0.5ℎ𝑀𝐾𝑇. 

Although these are our two basic choices, we also examine in section 2.2.5 the effects on 

the results of other sensible maximum Sharpe ratio choices, such as directly doubling the 

attainable Sharpe ratio of the passive portfolios.     

2.3.3 Cross-Sectional Performance Statistics 

To summarize the alpha estimates for mutual funds in our sample, we provide numerous 

cross-sectional statistics. First, we provide the mean, standard deviation and selected 

percentiles of the distributions of estimated alphas and their corresponding t-statistics, 

computed as 𝑡 = 𝛼̂ 𝜎̂𝛼̂⁄ , where 𝛼̂ is the estimated alpha, and 𝜎̂𝛼̂ is its Newey-West standard 

error. Second, we present t-statistics to test the hypothesis that the cross-sectional mean of 

estimated alphas is equal to zero. To perform this test, we assume that the cross-sectional 
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distribution of alphas is multivariate normal with a mean of zero, a standard deviation equal 

to the observed cross-sectional standard deviation and a correlation between any two alphas 

of 0.044. This last value matches the average correlation between fund residuals, adjusted 

for data overlap, reported by Barras, Scaillet and Wermers (2010, p. 193) and by Ferson 

and Chen (2015, Appendix, p. 62) when discussing the cross-sectional dependence in alpha 

among funds in their samples (which are similar to ours).  

Third, we compute the proportions of estimated alphas that are positive, negative, 

significantly positive at the 2.5% level and significantly negative at the 2.5% level, and we 

report the p-values on the significance of these proportions using the following likelihood 

ratio test proposed by Christoffersen (1998) based on a binomial distribution:7  

(24) 𝐿𝑅 = 2𝐿𝑜𝑔 [
(1 − 𝑛

𝑁
)

𝑁−𝑛
(𝑛

𝑁
)

𝑛

(1 − 𝑝𝑟)𝑁−𝑛(𝑝𝑟)𝑛
] ~𝜒2(1), 

where 𝑛 is the number of funds that respects a given criterion (i.e., being positive, negative, 

significantly positive or significantly negative), 𝑁 is the total number of funds, 
𝑛

𝑁
 is the 

empirical proportion tested, and 𝑝𝑟 is the expected probability under the null.  

Fourth, to control for mutual funds that exhibit significant alphas by luck or “false 

discoveries”, we apply the technique of Barras, Scaillet and Wermers (2010, hereafter 

BSW) and its extension by Ferson and Chen (2015, hereafter FC). Their ideas consist of 

computing the proportion of funds with 𝑡-statistics outside the thresholds implied by a 

significance level (𝛾), denoted by 𝑡− and 𝑡+, then removing from it the fraction of funds 

that exhibit large estimated alphas by luck, and finally adjusting the result to account for the 

power of the tests for detecting skilled or unskilled funds. The approach thus provides 

proportions adjusted for false discoveries.  

                                                 
7A first test examines whether the proportions of positive or negative alphas are equal to 50%. A second test 

examines whether the proportions of significantly positive alphas or significantly negative alphas are equal to 

2.5%. 
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Using the generalization proposed by FC, the proportions of unskilled funds (𝜋̂−), 

skilled funds (𝜋̂+) and zero performance funds (𝜋̂0) can be found by solving the following 

system of equations:  

(25) 𝑝𝑟𝑜𝑏̂(𝑡 > 𝑡+) =
𝛾

2
× 𝜋̂0 + 𝛿+ × 𝜋̂− + 𝛽+ × 𝜋̂+ 

(26) 𝑝𝑟𝑜𝑏̂(𝑡 < 𝑡−) =
𝛾

2
× 𝜋̂0 + 𝛽− × 𝜋̂− + 𝛿− × 𝜋̂+ 

(27) 𝜋̂0 = 1 − 𝜋̂+ − 𝜋̂−. 

In these equations, the probability 𝑝𝑟𝑜𝑏̂(𝑡 > 𝑡+) (𝑝𝑟𝑜𝑏̂(𝑡 < 𝑡−)) is the proportion 

of funds with 𝑡-statistics greater than 𝑡+ (less than 𝑡−), 
𝛾

2
 is the size of the test, 𝛿+ (𝛿−) is 

the probability that an unskilled (a skilled) fund is erroneously classified as a skilled (an 

unskilled) fund, and 𝛽+ (𝛽−) is the probability that a skilled (an unskilled) fund is correctly 

classified. Hence, the proportion of skilled funds 𝜋̂+ is equal to the in-sample proportion of 

significantly positive funds 𝑝𝑟𝑜𝑏̂(𝑡 > 𝑡+) less the proportions of funds with significantly 

positive performance by luck (
𝛾

2
× 𝜋̂0 for lucky zero performance funds and 𝛿+ × 𝜋̂− for 

very lucky unskilled funds), adjusted for the test power for skilled funds 𝛽+. The 

proportion of unskilled funds 𝜋̂− has a similar interpretation with respect to significantly 

negative funds, and the proportion of zero performance funds 𝜋̂0 is the proportion of funds 

that are not classified as skilled or unskilled funds.  

We follow BSW and FC in implementing the false discovery approach. As demonstrated by 

FC, BSW use a special case where 𝛿+ = 𝛿− = 0 and 𝛽+ = 𝛽− = 1, which can be solved as  

𝜋̂0 =
𝑝𝑟𝑜𝑏̂(𝑡−<𝑡<𝑡+)

1−𝛾
, 𝜋̂+ = 𝑝𝑟𝑜𝑏̂(𝑡 > 𝑡+) −

𝛾

2
× 𝜋̂0 and 𝜋̂− = 𝑝𝑟𝑜𝑏̂(𝑡 < 𝑡−) −

𝛾

2
× 𝜋̂0. 

They advocate values of 𝑡− = −0.5 and 𝑡+ = 0.5 as efficient thresholds to classify 



 

42 

adequately funds, which corresponds to a size of 0.3085. These choices result in our BSW 

classification.8  

FC argue that the special case proposed by BSW leads to biases because their 

assumed values for 𝛿+, 𝛿−, 𝛽+ and 𝛽− are unrealistic; instead, they use simulations to 

calibrate these parameters. Advocating a size of 0.05, which leads to asymptotic values of 

𝑡− = −1.645 and 𝑡+ = 1.645, they obtain the following parameters (see their Table 2.2, 

panel A): 𝛿+ = 0.05, 𝛿− = 0.04, 𝛽+ = 0.604 and 𝛽− = 0.512. Finally, they solve the 

system of equations numerically by minimizing the sum of squared errors of equations (25) 

and (26) subject to the Kuhn-Tucker conditions for the constraints that 𝜋̂+ ≥ 0, 𝜋̂− ≥ 0 and 

𝜋̂+ + 𝜋̂− ≤ 1, which ensure the positivity of the proportions. These choices result in our 

FC classification.9 

2.4 Data 

2.4.1 Mutual Fund Returns 

Our fund data consist of monthly returns on actively managed open-ended U.S. equity 

mutual funds from January 1984 to December 2012. Our data source is the CRSP Survivor-

Bias-Free US Mutual Fund Database. Following Kacperczyk, Sialm and Zheng (2008), we 

exclude bond funds, balanced funds, money market funds, international funds and funds 

that are not strongly invested in common stocks to focus on U.S. equity funds. Specifically, 

U.S. equity funds are identified using the following four types of codes: policy codes, 

Strategic Insight objective codes, Weisenberger objective codes and Lipper objective 

                                                 
8The false discovery adjustment of BSW can lead to a negative proportion of unskilled or skilled funds when 

the unadjusted observed proportion is close to zero. In such instances, we follow BSW by setting the adjusted 

proportion to zero and readjusting the proportion of zero performance funds so that the proportions sum to 

one.  
9We do not recalibrate the parameters 𝛿+, 𝛿−, 𝛽+ and 𝛽− with simulations as our fund sample is very similar 

to the FC sample. In section 2.5.6, we examine the robustness of our results to using simulated critical values 

at a size of 0.05 for 𝑡− and 𝑡+, instead of asymptotic values, and find that our conclusions are robust. 

Following BSW and the base case proposed by FC, our classifications assume that the true mean alphas are 

equal to 0.317% for skilled funds and -0.267% for unskilled funds. FC refine the approach further by 

estimating simultaneously the true mean alphas and proportions of skilled and unskilled funds, and by 

estimating simpler models with only two alpha groups. We do not pursue these refinements.  
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codes.10 The four types of codes are useful because each is available for only a part of our 

sample period. For example, the Lipper objective codes data start from December 1999. To 

focus on actively managed funds, we exclude index funds identified by the Lipper objective 

codes SP and SPSP and funds with a name that includes the word “index”. We also exclude 

mutual funds that are not open-ended by consulting the variable “open to investors” in the 

database. Finally, we keep the funds only if they hold, on average, between 80% and 105% 

in common stocks. 

From this initial sample of funds, we make further sampling decisions to alleviate 

known biases in the CRSP mutual fund database. Survivorship bias is one of the most well-

documented problems in mutual fund data. It occurs when only surviving funds are 

sampled out of a population in which some funds enter and leave. Following Fama and 

French (2010), we select 1984 as our starting year because the CRSP mutual fund database 

is free from this bias from then on. This starting year also eliminates a related selection bias 

in the early years of the database, as discussed by Elton, Gruber and Blake (2001) and 

Fama and French (2010). Back-fill and incubation biases are studied by Evans (2010). 

Back-fill bias arises because the database includes fund returns that are realized prior to the 

fund database entry. Incubation bias refers to a situation where only funds that perform well 

in an incubation period are eventually open to the public and included in the database.  To 

address these biases, we follow Elton, Gruber and Blake (2001) and Kacperczyk, Sialm and 

Zheng (2008). We eliminate observations before the organization date of the funds, funds 

that do not report their organization date, and funds without a name because they tend to 

correspond to incubated funds. We also exclude funds that have total net assets (TNA) 

inferior to $15 million in the first year of entering the database.  

As a last sampling choice, following Barras, Scaillet and Wermers (2010) and 

others, we consider a minimum fund return requirement of 60 months, given that our GMM 

estimation system for SDF alpha calls for enough observations to obtain reliable statistical 

estimates. Fama and French (2010) argue that this requirement introduces a survivorship 

                                                 
10As in Kacperczyk, Sialm and Zheng (2008), we identify U.S. equity funds by policy codes: CS; Strategic 

Insight objective codes: AGC, GMC, GRI, GRO, ING or SCG; Weisenberger objective codes: G, G-I, AGG, 

GCI, GRO, LTG, MCG or SCG and Lipper objective codes: EIEI, EMN, LCCE, LCGE, LCVE, MATC, 

MATD, MATH, MCCE, MCGE, MCVE, MLCE, MLGE, MLVE, SCCE, SCGE or SCVE. 
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bias in the results and use instead an eight-month survival screen to estimate their alphas 

based on regressions. Estimating SDF alphas in our GMM setup is obviously not feasible 

with only eight observations. Furthermore, an important part of our analysis consists of 

comparing best clientele alphas with LOP alphas, and survivorship bias should affect them 

similarly. Nevertheless, as a robustness check, we follow Barras, Scaillet and Wermers 

(2010) by estimating our main performance measures for funds with at least 36 months of 

returns. As they do, we find that our results are similar, and our conclusions are not altered 

by this choice.11  

Considering all previous steps, we have a final sample of 2786 actively managed 

open-ended U.S. equity mutual funds with returns for at least 60 months between 1984 and 

2012.  

2.4.2 Passive Portfolio Returns 

The choice of basis assets imposes a trade-off between economic power (i.e., in theory, all 

assets available to mutual fund investors should be included) and statistical power (i.e., an 

econometric estimation imposes limitations on the number of assets). We select three 

different sets of basis assets to represent passive opportunities available to investors. Our 

basis assets always include the risk-free rate plus one of the three following sets: (1) ten 

industry portfolios, (2) six style portfolios and (3) the market portfolio. These assets have 

been widely used in the empirical asset pricing literature and the mutual fund performance 

evaluation literature to capture the cross-section of stock returns. Classifications based on 

industry, style or market sensitivities are also common in practice to categorize equity 

investments for investors. The inclusion of the risk-free rate accounts for cash positions in 

equity mutual funds and fixes the mean of the SDF to a relevant value (Dahlquist and 

Söderlind (1999)). By varying the number and type of assets included, we aim to examine 

the sensitivity of our results to these choices in light of the aforementioned trade-off.   

                                                 
11 Specifically, we reproduce the results of Table 2.3 by using a 36-month screen rather than a 60-month 

screen. We find that, when using a 36-month screen, the mean LOP alpha is reduced by 0.0056% and the 

mean best clientele alphas are reduced by 0.0037% for a maximum Sharpe ratio of ℎ∗ + 0.5ℎ𝑀𝐾𝑇 and by 

0.0031% for a maximum Sharpe ratio of ℎ∗ + ℎ𝑀𝐾𝑇.  
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Ten industry portfolios are used for our main results, and the data are from Kenneth 

R. French’s website. The portfolios consist of consumer nondurables, consumer durables, 

manufacturing, energy, high technology, telecommunication, shops, healthcare, utilities, 

and other industries. Six style portfolios are obtained also from Kenneth R. French’s 

website. The portfolios are constructed from two market equity capitalization (size) sorts 

(large or small) and three book-to-market (value) sorts (low, medium or high). The market 

portfolio is the CRSP value-weighted index. Its returns and the risk-free rate returns are 

taken from the CRSP database.  

2.4.3 Information Variables 

For conditional performance evaluation, we consider the lagged values of four public 

information variables that are commonly used in the literature and were first introduced by 

Keim and Stambaugh (1986), Campbell (1987), Campbell and Shiller (1988) and Fama and 

French (1989). We use the dividend yield of the S&P 500 Index (DIV) from the Datastream 

database, which is computed as the difference between the log of the twelve-month moving 

sum of dividends paid on the S&P 500 and the log of its lagged value; the yield on three-

month U.S. Treasury bills (YLD) from the FRED database at the Federal Reserve Bank at 

St. Louis; the term spread (TERM), which is the difference between the long-term yield on 

government bonds (from Datastream) and the yield on the three-month Treasury bills; and 

the default spread (DEF), which is the difference between BAA- and AAA-rated corporate 

bond yields from the FRED database. 

With these lagged information variables, we construct four public information-

managed payoffs by combining them with the market portfolio returns. We then add these 

four managed payoffs to each set of basis assets described previously to obtain the 

augmented sets 𝐑𝐊
𝐀 used for conditional performance evaluation.  

2.4.4 Summary Statistics 

Table 2.1 presents the summary statistics for the monthly returns of our sample of actively 

managed open-ended U.S. equity mutual funds (panel A) and for the monthly returns of the 

basis assets and the values of the information variables (panel B). Panel A also includes 
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summary statistics for the SDF alphas from Carhart’s (1997) model and their corresponding 

t-statistics, which will serve as a basis for comparison for the LOP and best clientele 

alphas.12  

In panel A, monthly equity fund average returns (net of fees) have a mean of 0.73% 

and a standard deviation of 0.3% across funds. Average returns range from -4.83% to 

2.09%, and standard deviations range from 0.92% to 16.92%. Monthly Sharpe ratios vary 

from -0.464 to 0.379, with a mean of 0.086 and a standard deviation of 0.053. The cross-

sectional distribution of Carhart SDF alphas has a mean of -0.12% (𝑡-stat. = -2.32) and a 

standard deviation of 0.246%, and 73% of funds have a negative Carhart alpha. At the 5% 

significance level, approximately 15% (2%) of funds have significantly negative (positive) 

Carhart alphas. These results are typical compared with the findings in the mutual fund 

literature.  

In panel B, industry portfolios and style portfolios have mean monthly returns of 

approximately 1%. Industry portfolios have mean returns between 0.83% and 1.17% and 

standard deviations between 3.99% and 7.22%. Style portfolios have mean returns between 

0.80% and 1.22% and standard deviations between 4.58% and 6.76%. Sharpe ratios vary 

from 0.070 to 0.196 for industry portfolios and from 0.069 to 0.149 for style portfolios. 

Statistics for the market portfolio returns, the risk-free returns and the information variables 

are as expected. To illustrate the investment opportunities captured by the basis assets, 

Figure 2.1 shows the efficient frontiers of returns from the sets based on industry portfolios 

(RF + 10I), based on style portfolios (RF + 6S), and based on the market portfolio (RF + 

MKT). As expected, the market portfolio set provides fewer investment opportunities than 

the other sets.    

                                                 
12 The Carhart SDF is a linear function of the market factor, size (SMB) factor, value (HML) factor and 

momentum factor available on Kenneth R. French’s website. For each mutual fund, we estimate jointly the 

parameters of the Carhart SDF and the corresponding alpha by using GMM with a just identified system. 

Specifically, we estimate the five parameters of the Carhart SDF by requiring the SDF to price correctly the 

one-month Treasury bill return and the four Carhart factors, and the alpha by using a moment similar to 

equation (21), but with the Carhart SDF replacing the LOP SDF.   
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2.5 Empirical Results 

2.5.1 Best Clientele Stochastic Discount Factors 

We begin our empirical analysis by examining the estimated best clientele SDFs and the 

sources of disagreement. As discussed in section 2.2.3, the best clientele SDF 𝑚̅ depends 

on the error term 𝑤, related to the ability of passive portfolios to span mutual fund returns, 

and the disagreement parameter 𝑣, which accounts for the no-good-deal restriction and is a 

function of the maximum Sharpe ratio. Table 2.2 reports cross-sectional statistics on R-

squared from regressions of fund returns on different sets of passive portfolios and, for 

comparison, on Carhart’s (1997) factors (panel A), on estimates of the disagreement 

parameter 𝑣 (panel B) and on SDFs used for performance evaluation (panel C). Panels B 

and C show the results using the risk-free rate and ten industry portfolios as passive 

portfolios.  

 Panel A is informative on the ability of passive portfolios to replicate mutual fund 

payoffs. A higher R-squared should tighten the bound associated with the best clientele 

alpha. The panel shows that the six style portfolios provide the highest mean R-squared at 

85.3%, followed by the Carhart factors at 83.5% and the industry portfolios at 81.6%. The 

market portfolio provides the lowest mean R-squared at 74.8%. Although the three sets are 

similar in their 99th percentile R-squared, industry portfolios are better at spanning the fund 

returns that are most difficult to replicate, as indicated by the R-squared at the first 

percentile. Panel B shows that best clientele SDFs include a significant disagreement 

parameter 𝑣 in most cases.  When the maximum Sharpe ratio ℎ̅ = ℎ∗ + 0.5ℎ𝑀𝐾𝑇, the 

estimates of 𝑣 have a mean of 11.0, with t-statistics averaging 1.8. They are statistically 

significant at the 10% level for 67.4% of the funds. When ℎ̅ = ℎ∗ + ℎ𝑀𝐾𝑇, the estimates 

have a mean of 13.8, with statistically significant values for all funds. Panel C looks at the 

empirical SDFs used for performance evaluation in two best clientele measures and in the 

LOP measure (denoted by ℎ∗). As expected, given that the risk-free rate is part of the basis 

assets, the three SDFs have the same mean. Consistent with the increased estimates of 𝑣, 

the average across funds of the SDF standard deviations increases with the maximum 

Sharpe ratio. However, the higher volatility does not result in SDFs having undesirable 
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economic properties. In particular, the proportions of negative SDFs are well below 1% in 

all cases, suggesting that imposing the no-arbitrage condition to ensure the positivity of 

SDFs would not materially affect our results.  

2.5.2 Best Clientele Performance Results 

Table 2.3 presents the main empirical results. Using the risk-free rate and ten industry 

portfolios as basis assets, it shows statistics on the cross-sectional distribution of SDF 

alphas estimated with two best clientele performance measures, allowing for maximum 

Sharpe ratios of ℎ̅ = ℎ∗ + 0.5ℎ𝑀𝐾𝑇 and ℎ̅ = ℎ∗ + ℎ𝑀𝐾𝑇. The results for the LOP 

measure of Chen and Knez (1996) (denoted by ℎ∗) are also reported for comparison. Figure 

2.2 illustrates these results by presenting histograms on the distributions of LOP alphas and 

either best clientele alphas for ℎ = ℎ∗ + 0.5ℎ𝑀𝐾𝑇 (Figure 2.2a) or best clientele alphas for 

ℎ = ℎ∗ + ℎ𝑀𝐾𝑇 (Figure 2.2b). 

In panel A of Table 2.3, we provide the mean, standard deviation and selected 

percentiles of the distributions of the estimated alphas (columns under Performance) and 

their corresponding 𝑡-statistics (columns under 𝑡-statistics). We also report the 𝑡-statistics 

on the significance of the cross-sectional mean of the estimated alphas (see 𝑡-stat). As 

discussed in section 2.3.3, the test accounts for the cross-sectional dependence in 

performance among funds by assuming a correlation between any two alphas of 0.044. 

The distribution of SDF alphas from the best clientele measure with ℎ̅ = ℎ∗ +

ℎ𝑀𝐾𝑇 has a mean of 0.444% and a standard deviation of 0.418%. When ℎ̅ = ℎ∗ +

0.5ℎ𝑀𝐾𝑇, the mean and standard deviation decrease to 0.236% and 0.334%, respectively. 

Both means are significantly different from zero, with respective 𝑡-statistics of 3.35 and 

5.04. For comparison, the average alpha from the LOP measure, which does not attempt to 

capture the evaluation for best clienteles by ruling out investor disagreement (as 𝑣 = 0), is -

0.179% (𝑡-stat. = -3.14). This negative performance is similar to the Carhart results 

presented in Table 2.1, which also do not consider investor disagreement by focusing on a 

unique linear factor SDF for evaluation. As in Ferson and Lin (2014), these results support 

an economically important divergence in performance evaluation between clienteles. For 
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example, the magnitude of average disagreement between the LOP alpha and the best 

clientele alpha with ℎ̅ = ℎ∗ + 0.5ℎ𝑀𝐾𝑇 is 0.415%. This value is comparable to the 

magnitude of investor disagreement documented by Ferson and Lin (2014, Table III), who 

obtain bounds between 0.21% and 0.38% for the expected disagreement with traditional 

regression alphas for various benchmark returns. The divergence in alphas is well 

illustrated by the alpha distributions in Figure 2.2.  

The distributions of the 𝑡-statistics confirm that the increased performance 

associated with the best clientele measures result in more significantly positive alphas and 

fewer significantly negative alphas. Panel B studies this issue further. It gives proportions 

of estimated alphas that are positive (%𝛼̅𝑀𝐹 > 0), negative (%𝛼̅𝑀𝐹 < 0), significantly 

positive (%𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 > 0), and significantly negative (%𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 < 0). It also 

provides proportions adjusted for false discoveries with the techniques of Barras, Scaillet 

and Wermers (2010; denoted by the BSW classification) and of Ferson and Chen (2015; 

denoted by the FC classification), i.e., proportions of unskilled funds (𝜋̂−), skilled funds 

(𝜋̂+) and zero performance funds (𝜋̂0). It finally presents the 𝑝-values for the likelihood 

ratio tests (described in section 2.3.3), which show that the proportions of positive alphas 

are equal to 50% and that the proportions of significantly positive and significantly 

negative alphas are equal to 2.5%.  

The results in panel B show that the proportions of positive alphas and significantly 

positive alphas increase when considering best clienteles. They go from 20.32% to 91.49% 

for positive alphas and from 1.04% to 47.52% for significantly positive alphas. 

Accordingly, the proportions of negative and significantly negative alphas decrease, from 

79.68% to 8.51% for negative alphas and from 29.54% to 0.47% for significantly negative 

alphas. The 𝑝-values confirm the significance of these results. Furthermore, the proportions 

of skilled funds increase considerably for best clienteles (going from 0.00% to 65.34% for 

the FC classification and from 0.00% to 77.94% for the BSW classification). Inversely, the 

proportions of unskilled funds for best clienteles disappear.13 Again, accounting for 

                                                 
13 For the FC classification, results for the LOP measure, which does not consider investor disagreement, are 

similar to results of Ferson and Chen (2015) based on the Fama-French three-factor model. For the BSW 

classification, they show fewer zero alpha funds and more unskilled funds compared to results of Barras, 
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investor disagreement and focusing on the best potential clienteles are keys to 

understanding the difference between our results and the existing literature on the value 

added by fund managers. For example, the findings from the LOP measure are comparable 

to the results from the Carhart SDF and typical of the literature, with less than 30% (more 

than 70%) of funds having positive (negative) values. Notably, increasing allowable 

opportunities by half the market Sharpe ratio is sufficient to obtain approximately the 

opposite result. This is consistent with Ahn, Cao and Chrétien (2009), who argue that more 

than 80% of mutual funds could be given a positive performance value by some investors.  

To gain more insight into the best clientele performance evaluation, Figure 2.3 

presents the best clientele and LOP alphas for decile portfolios of the 2786 mutual funds 

sorted in increasing order of their average return (Figure 2.3a), their standard deviation of 

returns (Figure 2.3b), and their Sharpe ratio (Figure 2.3c). Figures 2.3a and 2.3c show that 

the alpha increases with the average return and the Sharpe ratio. Thus, not surprisingly, 

funds with higher average returns or Sharpe ratios are generally given higher best clientele 

or LOP alphas. Figure 2.3b reveals that best clientele alpha also increases with the standard 

deviation of returns, particularly for the five decile portfolios with the highest volatility, a 

relation not observed for LOP alpha. Hence, the difference between best clientele and LOP 

alphas (a disagreement measure in the spirit of the expected disagreement with a traditional 

alpha proposed by Ferson and Lin (2014)) is relatively stable across portfolios formed on 

the average return and the Sharpe ratio, but it increases across portfolios formed on the 

standard deviation of returns. Intuitively, highly volatile mutual funds represent somewhat 

“unique” opportunities for investors because they cannot be easily replicated by passive 

portfolio returns. This “uniqueness” allows for a greater valuation disagreement between 

investors.   

Overall, we find that an increase in admissible investment opportunities equivalent 

to half the Sharpe ratio of the market index leads to a generally positive performance for 

best clienteles. As stipulated by Chen and Knez (1996) and Ferson and Lin (2014), if the 

                                                                                                                                                     

Scaillet and Wermers (2010) based on the Carhart model. This finding is consistent with the distribution of 𝑡-

statistics being more to the left for LOP alphas than for Carhart alphas, combined with the analysis of Ferson 

and Chen (2015) that finds that the BSW classification is sensitive to the choice of test size.  
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SDF alpha is positive, then there are some investors who would want to buy the fund. Our 

best clientele alpha results suggest that there are clienteles who would want to buy a 

majority of mutual funds, consistent with the real-life continued investments in these 

vehicles.  

2.5.3 Conditional Best Clientele Performance Results 

A large body of literature, starting with Ferson and Schadt (1996) and Christopherson, 

Ferson and Glassman (1998), argues that accounting for public information results in 

improved performance measures and that alpha varies across the business cycle. In 

particular, Glode (2011) shows that mutual funds could be valuable to their clienteles by 

providing positive alphas during recessions, when their marginal utility (or SDF) is high. 

Moskowitz (2000), Kosowski (2011) and Kacperczyk, Van Niewerburgh and Veldkamp 

(2014) also find some evidence of better mutual fund performance in recessions. We 

implement a conditional version of our performance measure that considers the best 

clienteles of a mutual fund in an incomplete market with investor disagreement. To do so, 

we use the risk-free rate, ten industry portfolios and the public information-managed 

payoffs described in section 2.4.3 to form an augmented set of basis assets, and we take the 

system of moments, including equations (22) and (23), for estimation purposes.  

Table 2.4 presents the results for the conditional version of best clientele alphas. To 

revisit the findings of Glode (2011) and others, it gives statistics on average conditional 

alphas and average conditional alphas in expansions and recessions, with months classified 

according to the NBER US Business Cycle Expansions and Contractions Reference Dates. 

The table shows that the unconditional findings of the previous section extend to the 

average conditional results. By analyzing differences between Tables 3 and 4, we find that 

the conditional version decreases the alpha for 53% of funds using the LOP measure and 

for 74% and 80% of the funds using the best clientele performance measures, with ℎ̅ =

ℎ∗ + 0.5ℎ𝑀𝐾𝑇 and ℎ̅ = ℎ∗ + ℎ𝑀𝐾𝑇, respectively. However, the performance changes are 

less than five basis points for more than 90% of the funds.  

Notably, the results in expansions versus recessions are generally consistent with 

the findings of Glode (2011). Although the mean values are similar, it becomes apparent 
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that alphas are more positive in recessions than in expansions when comparing median 

values or looking at the proportions in Panel B. For example, the best clientele measure 

with ℎ̅ = ℎ∗ + 0.5ℎ𝑀𝐾𝑇 provides conditional alphas with, respectively, a mean and 

median of 0.220% and 0.168% in expansions, versus 0.260% and 0.400% in recessions. Its 

proportions of significantly positive alphas are 30.3% in expansions versus 49.9% in 

recessions, and its proportions of skilled funds with the FC classification are 36.2% in 

expansions versus 72.3% in recessions. Overall, the inclusion of conditioning information 

does not alter our conclusion on the importance of investor disagreement and best 

clienteles. We find a generally positive performance for best clienteles, with evidence that 

it is more favorable in recessions than in expansions.  

2.5.4 Sensitivity to Passive Portfolio Choice 

Tables 4 and 5 allow for an examination of the result sensitivity to the choice of basis 

assets. They show unconditional performance results using basis assets based on six style 

portfolios (Table 2.5) and the market portfolio (Table 2.6). In the latter case, the LOP 

measure is equivalent to the CAPM measure because the SDF is linear in the market return, 

𝑚∗ = 𝑎1𝑅𝐹 + 𝑎2𝑅𝑀𝐾𝑇.  

The previous findings are confirmed when using these alternative sets of basis 

assets. An increase in admissible investment opportunities equivalent to half the market 

Sharpe ratio leads to generally positive best clientele performance values, and more skilled 

funds than unskilled funds, for all sets of basis assets. For example, alphas estimated from 

the best clientele performance measure with ℎ̅ = ℎ∗ + 0.5ℎ𝑀𝐾𝑇 have a mean of 0.289% 

(𝑡-stat. = 3.98) for the six style portfolio set and 0.270% (𝑡-stat. = 4.23) for the market 

portfolio set. These values are slightly greater than the mean of 0.236% for the ten industry 

portfolio set. This result, along with a general comparison of the cross-sectional 

distributions of alphas from the three sets, suggests that the benchmarks implicit in the six 

style portfolios or the market portfolio appear slightly easier to “beat” on a risk-adjusted 

basis.  

As before, the means of the SDF alpha distributions indicate an economically 

important divergence in performance evaluation between clienteles. For example, the 
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magnitudes of average disagreement between LOP alphas and best clientele alphas with 

ℎ̅ = ℎ∗ + 0.5ℎ𝑀𝐾𝑇 are comparable across different basis assets (i.e., 0.415% for the ten 

industry portfolio set, 0.373% for the six style portfolio set and 0.339% for the market 

portfolio set). The higher disagreement for the ten industry portfolio set has two sources. 

Compared to style portfolios, industry portfolios span fund returns slightly less well, as 

shown in panel A of Table 2.2. Compared to the market portfolio, industry portfolios result 

in higher maximum Sharpe ratios, and hence higher disagreement parameters, due to their 

higher attainable Sharpe ratio ℎ∗.  

2.5.5 Alternative Maximum Sharpe Ratios 

Table 2.7 presents empirical results for other sensible choices of maximum Sharpe ratios, 

using the risk-free rate and ten industry portfolios as basis assets. As discussed earlier, 

several papers argue that the maximum Sharpe ratio ℎ̅ is a subjective choice. We explore 

three additional approaches for setting ℎ̅. In the first approach, we select it as a multiple of 

the attainable Sharpe ratio of the passive portfolios. Specifically, we consider ℎ̅ = 1.5ℎ∗ 

and ℎ̅ = 2ℎ∗. This approach is in line with the previously reviewed literature that chooses 

twice the Sharpe ratio of the basis assets. However, the sample ℎ∗ can be near zero or 

unusually high, particularly for funds with a limited time series. Taking a multiple of a 

potentially unrealistic ℎ∗ might lead to an unrealistic ℎ̅. In the second approach, we thus 

add to ℎ∗ a fraction of the full-sample optimal basis asset Sharpe ratio. The maximum 

Sharpe ratios become ℎ̅ = ℎ∗ + 0.5ℎ𝑇 and ℎ̅ = ℎ∗ + ℎ𝑇, where ℎ𝑇 represents the optimal 

Sharpe ratio of the basis assets in the full sample. In the third approach, because the sample 

ℎ𝑇 might be biased upward, we use instead an adjusted Sharpe ratio ℎ𝑇𝑎 following the bias 

correction proposed by Ferson and Siegel (2003).14 The maximum Sharpe ratios are then 

ℎ̅ = ℎ∗ + 0.5ℎ𝑇𝑎 and ℎ̅ = ℎ∗ + ℎ𝑇𝑎. 

                                                 
14 Ferson and Siegel (2003) show that the sample optimal Sharpe ratio is biased upward when the number of 

basis assets (K) is large relative to number of observations (T). Their proposed correction is ℎ𝑇𝑎 =

√
(ℎ𝑇)2 (𝑇−𝐾−2)

𝑇
−

𝐾

𝑇
. 



 

54 

The empirical results in Table 2.7 show that SDF alphas estimated from the best 

clientele performance measure have means varying from 0.297% (𝑡-stat. = 3.95) for ℎ̅ =

ℎ∗ + 0.5ℎ𝑇𝑎 to 0.797% (𝑡-stat. = 6.34) for ℎ̅ = 2ℎ∗. All maximum Sharpe ratios 

investigated lead to best clientele performance values that are generally positive and 

increasing with the importance of additional opportunities allowed by the choice of ℎ̅. 

Average investor disagreement, computed as the difference between the mean alpha in 

Table 2.7 and the mean LOP alpha in Table 2.3 (under ℎ∗), continues to be economically 

important. For example, when ℎ̅ = ℎ∗ + 0.5ℎ𝑇𝑎, we obtain an average disagreement of 

0.476%. Appendix 2.A documents similar findings using basis assets based on six style 

portfolios or the market portfolio. Overall, these results show that the maximum Sharpe 

ratio of ℎ̅ = ℎ∗ + 0.5ℎ𝑀𝐾𝑇, investigated in previous sections, is a relatively conservative 

choice. It adds fewer investment opportunities than the other sensible maximum Sharpe 

ratios that can be justified from the literature.  

2.5.6 Finite Sample Properties of Best Clientele Alphas 

All previous results use the asymptotic GMM theory of Hansen (1982), along with Newey 

and West’s (1987) standard errors, to make inferences on estimated alphas. However, as 

first documented by Ferson and Foerster (1994) in an asset-pricing context, the finite 

sample properties of GMM estimators can deviate from their asymptotic properties. For 

mutual funds, Kosowski, Timmermann, Wermers and White (2006) and Fama and French 

(2010) are examples of studies on the finite sample properties of regression-type alpha 

estimates. This section provides finite sample evidence on our SDF alpha estimates by 

conducting bootstrap simulations. 

 Specifically, we conduct a bootstrap experiment that imposes the null hypothesis 

that alpha is zero by adapting the procedure proposed in Fama and French (2010) and 

Ferson and Chen (2015) to the case of SDF alpha. First, we create adjusted (gross) mutual 

fund returns, defined as 𝑅𝑀𝐹𝑡
𝐴𝑑𝑗

= 𝑅𝑀𝐹𝑡 − ∝̂𝑀𝐹 𝐸(𝑚)̂⁄ , where ∝̂𝑀𝐹 is the best clientele or 

LOP alpha estimate in the actual data, and 𝐸(𝑚)̂ is the mean in the actual data of the best 

clientele or LOP SDF associated with ∝̂𝑀𝐹 . Using these adjusted mutual fund returns in the 

simulations imposes the null that the “true” alphas are zero. Second, for all funds, we form 
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a simulated sample with a size equal to the total number of observations by drawing with 

replacement from their adjusted returns and the passive portfolio returns. Each draw picks 

the data that correspond to a randomly selected date, hence capturing the correlations across 

funds. This bootstrap procedure is repeated to create 1000 samples. Following Ferson and 

Chen (2015), we apply the 60-month survival screen only after a fund is drawn for an 

artificial sample.15 Third, we obtain the empirical distributions of the SDF alpha 𝑡-statistics 

by computing the alpha estimates and their 𝑡-statistics for each of the 1000 samples, 

following the estimation strategy of section 2.3.1. 

Table 2.8 presents, in the case of the passive portfolios based on ten industry 

portfolios, the results of using bootstrap empirical distributions of the SDF alpha 𝑡-statistics 

for inference purposes. Panel A gives statistics on the distributions of bootstrap 𝑝-value 

statistics for the LOP measure and two best clientele performance measures (with a 

maximum Sharpe ratio of either ℎ̅ = ℎ∗ + 0.5ℎ𝑀𝐾𝑇 or ℎ̅ = ℎ∗ + ℎ𝑀𝐾𝑇). Panel B presents 

proportions of alphas that are significantly positive (%𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 > 0) and significantly 

negative (%𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 < 0) using the bootstrap 𝑝-values, and proportions adjusted for 

false discoveries based on the simulated critical values for 𝑡-statistics that correspond to the 

size used in the BSW and FC classifications. Overall, the findings of previous sections on 

the generally positive performance for best clienteles are robust to finite sample issues. For 

example, the proportions in panel B, computed from simulated empirical distributions of 

the 𝑡-statistics, are similar to the proportions in panel B of Table 2.3, where significance is 

assessed with the asymptotic distribution.  

2.5.7 Zero-Alpha Implied Maximum Sharpe Ratios 

Our analysis has thus far relied on an exogenous choice for the maximum Sharpe ratio. 

Previously, we showed that although this choice is somewhat subjectively specified, the 

literature offers some guidance, providing a justification for our selections. This section 

                                                 
15 The simulation procedure leads to missing values being distributed randomly in the artificial sample, while 

they occur mainly in blocks in the original data. As discussed by Ferson and Chen (2015), it preserves the 

important cross-sectional dependence between funds, but not the small serial dependence in the data. 

Consequently, the method of Newey and West (1987) with no lag is used for standard errors in the 

simulations.  
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investigates an alternative estimation strategy that does not require the selection of a 

maximum Sharpe ratio and leads to an evaluation of the investor disagreement needed for 

mutual funds to be fairly priced by their potentially best clienteles.  

To understand this strategy, notice that the selection of the maximum Sharpe ratio ℎ̅ 

allows for the estimation of the disagreement parameter 𝑣 in equation (19). Then, 𝑣 is 

needed for the estimation of 𝛼̅𝑀𝐹 with equation (20). In this section, we proceed in reverse. 

Specifically, we set a value for alpha that implies that the best clientele gives zero value to 

a mutual fund, 𝛼̅𝑀𝐹 = 0. This choice leads to the estimation of 𝑣 with equation (20), which 

then allows for the estimation of ℎ̅ with equation (19). We call the resulting estimated ℎ̅ the 

“zero-alpha implied maximum Sharpe ratio”. Finally, the difference between this value for 

a fund and the corresponding optimal basis asset Sharpe ratio for its sample, ℎ̅ − ℎ∗, gives 

the increase in admissible investment opportunities sufficient to achieve zero alpha. As 

discussed in section 2.2.3, a greater difference of ℎ̅ − ℎ∗ leads to a wider potential valuation 

disagreement among investors (with no disagreement when ℎ̅ − ℎ∗ = 0). Hence, a small 

value for ℎ̅ − ℎ∗ indicates that little investor disagreement is needed to find clienteles who 

give a nonnegative value to a fund.  

Table 2.9 shows the distributions of the implied Sharpe ratios estimated when fixing 

the best clientele alpha at zero (under 𝛼̅𝑀𝐹 = 0), the attainable optimal Sharpe ratios of the 

passive portfolios (under Basis Assets) and the fund-by-fund differences between the 

Sharpe ratios. For all three sets of basis assets, the average differences are small, so only a 

small increase in admissible opportunities is needed to change the negative mean LOP 

alphas into zero mean best clientele alphas. For example, when considering ten industry 

portfolios as basis assets, augmenting Sharpe ratio opportunities by only 0.041 

(approximately one third of the sample market Sharpe ratio) is sufficient for fund 

evaluation to become zero on average. Even fewer additional opportunities are needed for 

the passive portfolios based on six style portfolios (0.030) and the market index (0.034). 

The distributions show that funds require different levels of investor disagreement to be 

valued fairly. For example, with the basis assets based on ten industry portfolios and 

according to the 1st and 99th percentiles, the zero-alpha implied Sharpe ratios vary from 

0.149 to 0.751, and the Sharpe ratio differences vary from 0.000 to 0.460. Nevertheless, 
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these findings suggest that our conclusion on the generally positive performance values for 

best potential clienteles would hold unless an unreasonably low value for the maximum 

Sharpe ratio is selected. 

2.5.8 Worst Clientele Performance Results and Total Disagreement 

In all previous sections, the results focus on the best clientele alpha, a useful measure for 

managers who hope to cater to the right clienteles and for researchers who wish to 

understand whether there are some investors who would want to buy a fund. In this section, 

we examine the “worst clientele alpha” by estimating the lower bound on the expected 

alpha in our setup, and we investigate the total performance disagreement found by 

comparing the best clientele alpha with the worst clientele alpha. The worst clientele alpha 

is helpful in understanding whether there are clienteles that value funds more negatively 

than previous evidence shows. More optimistically, a positive worst clientele alpha 

indicates that all investors favorably value a fund. The measure of total performance 

disagreement extends the results of Ferson and Lin (2014), who argue that there is an 

economically important divergence in performance evaluation between clienteles.  

It is straightforward to obtain the worst performance alpha. Cochrane and Saá-

Requejo (2000) show that the solution to the lower-bound problem can be found using the 

SDF given by 𝑚 = 𝑚∗ − 𝑣𝑤, which we call the “worst clientele SDF”. Then, the worst 

performance alpha is given by 𝛼𝑀𝐹 = 𝐸[𝑚𝑅𝑀𝐹] − 1 and can be estimated empirically by 

GMM using the estimation strategy presented previously. Table 2.10 presents the cross-

sectional performance statistics for the estimates of worst clientele alphas. The results in 

panel A show that the distribution of worst clientele SDF alphas with ℎ̅ = ℎ∗ + ℎ𝑀𝐾𝑇 has 

a mean of -0.801% (𝑡-stat. = -7.94) and a standard deviation of 0.480%. When ℎ̅ = ℎ∗ +

0.5ℎ𝑀𝐾𝑇, the mean and standard deviation decrease to -0.594% (𝑡-stat. = -7.26) and 

0.388%, respectively. Both distributions clearly show more underperforming funds 

compared to LOP alphas or Carhart alphas (reported in Table 2.1). In fact, the proportions 

in panel B indicate that fewer than 1% of funds have positive worst clientele alphas, 

suggesting that almost all funds are negatively evaluated by some investors. From the point 
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of view of worst clienteles, more than 90% of mutual funds appear unskilled. Thus, the 

evidence from worst clienteles is more negative than that from standard models. 

  With estimates of best and worst clientele alphas, it is straightforward to obtain the 

total performance disagreement. Cochrane and Saá-Requejo (2000) analyze the difference 

between their upper and lower bounds. In our context, we can interpret the difference 

between best and worst clientele alphas, 𝛼̅𝑀𝐹 − 𝛼𝑀𝐹 = 2𝑣𝐸(𝑤2) as a measure of total 

performance disagreement between mutual fund investors. This measure is different from 

the bound on the expected disagreement with the traditional alpha of Ferson and Lin 

(2014). Their bound provides an estimate of the disagreement that best or worst clienteles 

could have with a traditional alpha but not the larger total disagreement that they have with 

each other. Focusing on the best and worst clientele measures with a maximum Sharpe ratio 

of ℎ̅ = ℎ∗ + 0.5ℎ𝑀𝐾𝑇, Table 2.11 shows statistics on the cross-sectional distributions of 

total disagreement values and their 𝑡-statistics for the three sets of basis assets. The results 

extend the evidence of Ferson and Lin (2014) on the economically and statistically 

significant performance disagreement in mutual fund evaluation. For the three sets of basis 

assets, total disagreement values are significantly positive for more than 99% of funds, with 

mean values of 0.830% (𝑡-stat. = 8.20) for the industry portfolio set, 0.746% (𝑡-stat. = 8.48) 

for the style portfolio set and 0.677% (𝑡-stat. = 8.62) for the market portfolio set. These 

results are comparable with twice the values of investor disagreement documented by 

Ferson and Lin (2014, Table III), consistent with interpreting their bound as the expected 

disagreement from a traditional alpha applicable to both best and worst clienteles.16 

2.6 Conclusion  

In this paper, we apply the no-good-deal approach of Cochrane and Saá-Requejo (2000) to 

measure mutual fund performance from the point of view of the most favorable clienteles. 

This approach allows us to consider investor disagreement in mutual fund performance 

                                                 
16 In unreported estimations, following Ferson and Lin (2014), we separate out retail funds from institutional 

funds on the assumption that individuals are more heterogeneous than institutional investors. We do not find 

any conclusive evidence of differences in best clientele alpha, worst clientele alpha or total disagreement 

between the two subsamples. In their analysis of fund flows and disagreement, Ferson and Lin (2014) also do 

not find significant differences between these classes of funds.  
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measurement. We use a large cross-section of actively managed open-ended U.S. equity 

mutual funds to provide the first comprehensive performance evaluation exercise from the 

point of view of the potentially most favorable clienteles of each fund.  

Our empirical results suggest that the long-standing issue of actively managed 

mutual fund underperformance might be due to the implicit use of unique representative 

investors in standard performance measures. Considering investor disagreement and 

focusing on best clienteles cause mutual funds to perform better, with the cross-sectional 

average of estimated alphas increasing with additional admissible investment opportunities 

in an incomplete market. These results are robust to the use of different passive portfolios, 

different maximum Sharpe ratios (which control the investor disagreement parameter), 

conditioning information, and finite sample issues and adjustments for false discoveries. 

Overall, they support the findings of Ahn, Cao and Chrétien (2009) and Ferson and Lin 

(2014) on the importance of investor disagreement in mutual fund evaluation.  

The best clientele performance approach can be extended in numerous ways. First, it 

can be interesting to identify and characterize valuable investor clienteles by studying the 

implied marginal preferences reflected in the best clientele SDFs. Second, it is possible to 

investigate how the best clientele evaluations differ from the evaluations of representative 

investors implicit in commonly used performance models. Such a comparison, by 

examining how a representative investor can misrepresent the value of funds for some of 

their clienteles, could form the basis of an evaluation of the appropriateness of standard 

measures for the purpose of performance evaluation. Finally, additional or different 

restrictions can be imposed on the set of investor SDFs (such as the maximum gain-loss 

ratio condition of Bernardo and Ledoit (2000)) to adapt the approach to measuring the 

performance of portfolios with nonlinear payoffs, such as hedge funds.   
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Table 2.1: Summary Statistics 

Table 2.1 presents summary statistics for the monthly data from January 1984 to December 

2012. Panel A shows cross-sectional summary statistics (average (Mean), standard 

deviation (StdDev) and selected percentiles) on the distributions of the average (Mean), 

standard deviation (StdDev), minimum (Min), maximum (Max), Sharpe ratio (h) and 

Carhart SDF alphas with their corresponding t-statistics for the returns on 2786 actively 

managed open-ended U.S. equity mutual funds. It also reports the t-statistics (t-stat) on the 

significance of the mean of estimated Carhart SDF alphas (see test description in section 

2.3.3). Panel B gives the average (Mean), standard deviation (StdDev), minimum (Min), 

maximum (Max) and Sharpe ratio (h) for passive portfolio returns and information 

variables. Passive portfolios include ten industry portfolios (consumer nondurables 

(NoDur), consumer durables (Dur), manufacturing (Manuf), energy (Enrgy), high 

technology (HiTec), telecommunication (Telcm), shops (Shops), healthcare (Hlth), utilities 

(Utils), and other industries (Other)), six Fama-French style portfolios based on two market 

equity capitalization (size) sorts (big (B) or small (S)) and three book-to-market (value) 

sorts (low (L), medium (M) or high (H)), the market portfolio (MKT) based on the CRSP 

value-weighted index, and the risk-free asset (RF) based on the one-month Treasury bill. 

The information variables are lagged values of the dividend yield on the S&P500 Index 

(DIV), the yield on the three-month Treasury bill (YLD), the term spread (TERM) and the 

default spread (DEF). All statistics are in percentage except for the Sharpe ratios and the t-

statistics.  

Panel A: Mutual Fund Returns and Carhart Alphas 

 
Mutual Fund Returns Carhart Alphas 

 
Mean StdDev Min Max      h 𝛼𝑀𝐹 𝑡-statistics 

Mean 0.7338 5.3400 -19.9976 16.4080  0.0857 -0.1200 -0.7398 

StdDev 0.3008 1.5632 5.6560 7.8772  0.0532 0.2456 1.2534 

(𝑡-stat)      (-2.321)  

        
99% 1.3677 10.3594 -5.5453 41.5517  0.1990 0.4231 2.2289 

95% 1.1405 8.2353 -12.8253 32.5704  0.1593 0.2120 1.3169 

90% 1.0453 7.2002 -14.4430 27.0565  0.1427 0.1271 0.8321 

75% 0.9044 6.0719 -16.5652 18.5645  0.1178 0.0109 0.0731 

Median 0.7464 5.0272 -19.4020 14.1103  0.0900 -0.1016 -0.7466 

25% 0.5946 4.3865 -22.9302 11.4669  0.0613 -0.2214 -1.5149 

10% 0.4232 3.8968 -26.3190 9.9918  0.0229 -0.3811 -2.2580 

5% 0.2943 3.4811 -29.0886 9.0829 -0.0033 -0.5037 -2.7996 

1% -0.1139 1.6197 -36.9313 5.3715 -0.0827 -0.8329 -4.1538 
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Table 2.1: Summary Statistics (Continued) 

Panel B: Passive Portfolio Returns and Information Variables 

 
Mean StdDev Min Max h 

Industry Portfolios 

NoDur 1.1713 4.3493 -21.0300 14.7400 0.1962 

Durbl 0.8311 7.0347 -32.8900 42.9200 0.0698 

Manuf 1.0667 5.1203 -27.3200 17.7800 0.1420 

Enrgy 1.1223 5.3691 -18.3900 19.1300 0.1459 

HiTec 0.9338 7.2260 -26.1500 20.4600 0.0822 

Telcm 0.9689 5.2612 -15.5600 22.1200 0.1199 

Shops 1.0394 5.0898 -28.3100 13.3800 0.1375 

Hlth 1.1140 4.7552 -20.4700 16.5400 0.1636 

Utils 0.9444 3.9952 -12.6500 11.7600 0.1521 

Other 0.8829 5.3165 -23.6800 16.1100 0.1024 

Style Portfolios, Market Portfolio and Risk-Free Asset 

B/L 0.9403 4.7004 -23.1900 14.4500 0.1281 

B/M 0.9705 4.5832 -20.3200 14.8500 0.1378 

B/H 0.9279 5.2367 -24.4700 22.1600 0.1126 

S/L 0.8037 6.7657 -32.3400 27.0200 0.0685 

S/M 1.1221 5.2548 -27.5700 18.8700 0.1487 

S/H 1.2282 6.2180 -28.0500 38.3900 0.1426 

      
MKT 0.9174 4.5814 -22.5363 12.8496 0.1262 

RF 0.3393 0.2166 0.0000 1.0000 - 

Information Variables 

DIV 2.4649 0.9204 1.0800 4.9900 - 

YLD 4.1264 2.6038 0.0100 10.4700 - 

TERM 1.9419 1.1392 -0.5300 3.7600 - 

DEF 1.0255 0.4046 0.5500 3.3800 - 
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Table 2.2: Spanning Regression R-Squared, Disagreement Parameter Estimates and 

Stochastic Discount Factors for Performance Evaluation 
Table 2.2 shows statistics on the cross-sectional distributions of R-squared values from the 

regressions of mutual fund returns on passive portfolio returns (panel A), estimates of the 

disagreement parameter v for two best clientele performance measures (denoted by ℎ∗ + 0.5ℎ𝑀𝐾𝑇 

and ℎ∗ + ℎ𝑀𝐾𝑇; panel B), and estimates of the stochastic discount factors for two best clientele 

performance measures and for the LOP measure (denoted by ℎ∗; panel C). The passive portfolios in 

panel A are the risk-free rate and either ten industry portfolios, six style portfolios, the market 

portfolio or the Carhart factors. The best clientele measures in panels B and C consider maximum 

Sharpe ratios of ℎ∗ + 0.5ℎ𝑀𝐾𝑇 and ℎ∗ + ℎ𝑀𝐾𝑇 (see definition in section 2.3.2), and all measures 

in panels B and C use the risk-free rate and ten industry portfolios (RF + 10I) as basis assets. Panel 

A provides the mean, standard deviation (StdDev), and 99th and 1st percentiles. Panel B provides the 

mean, standard deviation (StdDev), and proportions in percentage of estimated v that are 

significantly positive at the 5% (%𝑣 𝑠𝑖𝑔𝑛𝑖𝑓 > 0 𝑎𝑡 5%) and 10% (%𝑣 𝑠𝑖𝑔𝑛𝑖𝑓 > 0 𝑎𝑡 10%) 

levels. Panel C provides the mean, standard deviation (StdDev), 99th and 1st percentiles, and 

proportions in percentage of stochastic discount factor estimates that are positive (%𝑚 > 0) and 

negative (%𝑚 > 0). The data (see description in Table 2.1) cover the period January 1984-

December 2012. 
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Table 2.3: Best Clientele Alphas Using the RF + 10I Passive Portfolio Set 
Table 2.3 shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with two best 

clientele performance measures, allowing for maximum Sharpe ratios of ℎ∗ + 0.5ℎ𝑀𝐾𝑇 and ℎ∗ + ℎ𝑀𝐾𝑇 (see 

definition in section 2.3.2), and with the LOP measure (denoted by ℎ∗), using the risk-free rate and ten 

industry portfolios (RF + 10I) as basis assets. Panel A provides the mean, standard deviation (StdDev) and 

selected percentiles of the distributions of estimated alphas (columns under Performance) and their 

corresponding t-statistics (columns under t-statistics). It also reports the t-statistics (t-stat) on the significance 

of the mean of the estimated alphas (see test description in section 2.3.3). Panel B gives proportions of 

estimated alphas that are positive (%𝛼̅𝑀𝐹 > 0), negative (%𝛼̅𝑀𝐹 < 0), significantly positive 

(%𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 > 0), and significantly negative (%𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 < 0). It also provides proportions adjusted for 

false discoveries according to the BSW and FC classifications (see description in section 2.3.3), i.e., 

proportions of zero alpha, unskilled and skilled funds. It finally presents the p-values (in parentheses) for the 

likelihood ratio tests (see description in section 2.3.3) that the proportions of positive estimated alphas are 

equal to 50%, and the proportions of significantly positive and significantly negative estimated alphas are 

equal to 2.5%. The data (see description in Table 2.1) cover the period January 1984-December 2012. All 

statistics are in percentage except the t-statistics.  

Panel A: Performance and 𝒕-statistics of Individual Mutual Funds 

 
Performance 

 
𝑡-statistics 

 
ℎ∗ ℎ∗ + 0.5ℎ𝑀𝐾𝑇 ℎ∗ + ℎ𝑀𝐾𝑇 

 
ℎ∗ ℎ∗ + 0.5ℎ𝑀𝐾𝑇 ℎ∗ + ℎ𝑀𝐾𝑇 

Mean -0.1789 0.2360 0.4436 
 

-1.2291 1.0220 1.9033 

StdDev 0.2707 0.3344 0.4183 
 

1.4743 1.4333 1.4009 

(𝑡-stat) (-3.138) (3.351) (5.036) 
 

           

99% 0.3580 1.2708 1.8383 
 

2.0211 4.4955 5.4554 

95% 0.1787 0.7851 1.1586 
 

1.0473 3.3544 4.2584 

90% 0.0967 0.6440 0.9764 
 

0.5435 2.7535 3.5898 

75% -0.0364 0.4225 0.6801 
 

-0.2258 1.9417 2.7639 

Median -0.1630 0.1841 0.3575 
 

-1.1398 1.0652 1.8940 

25% -0.2854 0.0223 0.1494 
 

-2.1715 0.1720 1.0671 

10% -0.4501 -0.1029 0.0182 
 

-3.1627 -0.8232 0.1570 

5% -0.5978 -0.1909 -0.0708 
 

-3.6814 -1.4254 -0.4560 

1% -0.9247 -0.4353 -0.2388 
 

-4.8763 -2.6052 -1.4975 

 
Panel B: Performance Proportions 

 

  
ℎ∗ ℎ∗ + 0.5ℎ𝑀𝐾𝑇 ℎ∗ + ℎ𝑀𝐾𝑇 

Performance %𝛼̅𝑀𝐹 > 0 20.32 (0.00) 78.36 (0.00) 91.49 (0.00) 

Sign %𝛼̅𝑀𝐹 < 0 79.68 24.41 8.51 

Performance %𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 > 0 1.04 (0.00) 21.64 (0.00) 47.52 (0.00) 

Significance %𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 < 0 29.54 (0.00) 2.26 (40.96) 0.47 (0.00) 

BSW Classification 

Adjusted for  

False Discoveries  

Zero alpha 49.49 49.19 22.06 

Unskilled 50.51 0 0 

Skilled 0.00 50.81 77.94 

FC Classification 

Adjusted for 

False Discoveries 

Zero alpha 67.16 64.77 34.66 

Unskilled 32.84 0.00 0.00 

Skilled 0.00 35.23 65.34 
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Table 2.4: Conditional Best Clientele Alphas Using the RF + 10I + RZ Passive 

Portfolio Set 

Table 2.4 shows statistics on the cross-sectional distribution of monthly conditional SDF 

alphas estimated with two best clientele performance measures, allowing for maximum 

Sharpe ratios of ℎ∗ + 0.5ℎ𝑀𝐾𝑇 and ℎ∗ + ℎ𝑀𝐾𝑇 (see definition in section 2.3.2), and with 

the LOP measure (denoted by ℎ∗), using the risk-free rate, ten industry portfolios and 

public information-managed payoffs (RF + 10I + RZ) as basis assets. Results are shown for 

average conditional alphas, as well as average conditional alphas in recessions and 

expansion. Panel A provides the mean, standard deviation (StdDev) and median of the 

distributions of estimated alphas. It also reports the t-statistics (t-stat) on the significance of 

the mean of the estimated alphas (see test description in section 2.3.3). Panel B gives 

proportions of estimated alphas that are positive (%𝛼̅𝑀𝐹 > 0), negative (%𝛼̅𝑀𝐹 < 0), 

significantly positive (%𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 > 0), and significantly negative (%𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 < 0). 

It also provides proportions adjusted for false discoveries according to the BSW and FC 

classifications (see description in section 2.3.3), i.e., proportions of zero alpha, unskilled 

and skilled funds. It finally presents the p-values (in parentheses) for the likelihood ratio 

tests (see description in section 2.3.3) that the proportions of positive estimated alphas are 

equal to 50%, and the proportions of significantly positive and significantly negative 

estimated alphas are equal to 2.5%. The data (see description in Table 2.1) cover the period 

January 1984-December 2012. All statistics are in percentage except the t-statistics.  

Panel A: Performance and t-statistics of Individual Mutual Funds 

 

Performance  

 

 t-statistics  

  ℎ∗ ℎ∗ + 0.5ℎ𝑀𝐾𝑇 ℎ∗ + ℎ𝑀𝐾𝑇   ℎ∗ ℎ∗ + 0.5ℎ𝑀𝐾𝑇 ℎ∗ + ℎ𝑀𝐾𝑇 

  Average Conditional Alphas 

Mean -0.1795 0.2298 0.4347 

 

-1.2283 1.0138 1.8980 

Std Dev 0.2684 0.3322 0.4145 

 

1.4582 1.4399 1.4186 

(𝑡-stat) (-3.176) (3.284) (4.980) 

    Median -0.1642 0.1813 0.3524 

 

-1.1368 1.0528 1.8940 

  Average Conditional Alphas in Expansions 

Mean -0.1888 0.2200 0.4245 

 

-1.4069 1.4647 2.6376 

Std Dev 0.2576 0.3287 0.4134 

 

1.5131 2.5582 3.1596 

(𝑡-stat) (-3.481) (3.178) (4.877) 

    Median -0.1812 0.1682 0.3384 

 

-1.2477 0.8822 1.7058 

  Average Conditional Alphas in Recessions 

Mean -0.2005 0.2596 0.4884 

 

-0.4067 1.7604 3.0569 

Std Dev 1.1634 1.0654 1.1371 

 

6.3434 7.7998 7.8361 

(𝑡-stat) (-0.818) (1.157) (2.040) 

    Median 0.1232 0.3999 0.5584   0.9875 2.0451 2.6832 

 

 



 

69 

Table 2.4: Conditional Best Clientele Alphas Using the RF + 10I + RZ Passive 

Portfolio Set (Continued) 

 
Panel B: Performance Proportions 

 

  
ℎ∗ ℎ∗ + 0.5ℎ𝑀𝐾𝑇 ℎ∗ + ℎ𝑀𝐾𝑇 

Average Conditional Alphas 

Performance %𝛼̅𝑀𝐹 > 0 19.81(0.00) 77.93 (0.00) 91.03 (0.00) 

Sign %𝛼̅𝑀𝐹 < 0 80.19 22.07 8.97 

Performance %𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 > 0 1.01 (0.00) 24.23 (0.00) 47.67 (0.00) 

Significance %𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 < 0 29.40 (0.00) 2.15 (23.05) 0.36 (0.00) 

BSW Classification 

Adjusted for  

False Discoveries  

Zero alpha 49.06 49.53 22.62 

Unskilled 50.94 0.00 0.00 

Skilled 0.00 50.47 77.38 

FC Classification 

Adjusted for 

False Discoveries 

Zero alpha 67.64 65.63 34.95 

Unskilled 32.36 0.00 0.00 

Skilled 0.00 34.37 65.05 

Average Conditional Alphas in Expansions 

Performance %𝛼̅𝑀𝐹 > 0 16.12(0.00) 75.09(0.00) 89.91(0.00) 

Sign %𝛼̅𝑀𝐹 < 0 83.88 24.91 10.09 

Performance %𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 > 0 0.65(0.00) 30.29(0.00) 45.37(0.00) 

Significance %𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 < 0 34.06(0.00) 2.30(0.49) 0.75(0.00) 

BSW Classification 

Adjusted for  

False Discoveries  

Zero alpha 46.65 62.41 38.83 

Unskilled 53.35 0.00 0.00 

Skilled 0.00 37.59 61.17 

FC Classification 

Adjusted for 

False Discoveries 

Zero alpha 64.55 63.76 43.76 

Unskilled 35.45 0.00 0.00 

Skilled 0.00 36.24 56.24 

Average Conditional Alphas in Recessions 

Performance %𝛼̅𝑀𝐹 > 0 58.08(0.00) 75.41(0.00) 80.15(0.00) 

Sign %𝛼̅𝑀𝐹 < 0 41.92 24.59 19.85 

Performance %𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 > 0 38.05(0.00) 49.89(0.00) 56.96(0.00) 

Significance %𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 < 0 26.63(0.00) 15.51(0.00) 12.96(0.00) 

BSW Classification 

Adjusted for  

False Discoveries  

Zero alpha 22.21 26.15 20.43 

Unskilled 31.23 12.79 10.50 

Skilled 46.56 61.06 69.07 

FC Classification 

Adjusted for 

False Discoveries 

Zero alpha 33.46 27.70 21.12 

Unskilled 2.52 0.00 0.00 

Skilled 64.02 72.30 78.88 
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Table 2.5: Best Clientele Alphas Using the RF + 6S Passive Portfolio Set 
Table 2.5 shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with two best 

clientele performance measures, allowing for maximum Sharpe ratios of ℎ∗ + 0.5ℎ𝑀𝐾𝑇 and ℎ∗ + ℎ𝑀𝐾𝑇 (see 

definition in section 2.3.2), and with the LOP measure (denoted by ℎ∗), using the risk-free rate and six style 

portfolios (RF + 6S) as basis assets. Panel A provides the mean, standard deviation (StdDev) and selected 

percentiles of the distributions of estimated alphas (columns under Performance) and their corresponding t-

statistics (columns under t-statistics). It also reports the t-statistics (t-stat) on the significance of the mean of 

the estimated alphas (see test description in section 2.3.3). Panel B gives the proportions of estimated alphas 

that are positive (%𝛼̅𝑀𝐹 > 0), negative (%𝛼̅𝑀𝐹 < 0), significantly positive (%𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 > 0), and 

significantly negative (%𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 < 0). It also provides proportions adjusted for false discoveries 

according to the BSW and FC classifications (see description in section 2.3.3), i.e., proportions of zero alpha, 

unskilled and skilled funds. It finally presents the p-values (in parentheses) for the likelihood ratio tests (see 

description in section 2.3.3) that the proportions of positive estimated alphas are equal to 50%, and the 

proportions of significantly positive and significantly negative estimated alphas are equal to 2.5%. The data 

(see description in Table 2.1) cover the period January 1984-December 2012. All statistics are in percentage 

except the t-statistics. 

Panel A: Performance and 𝒕-statistics of Individual Mutual Funds 

 
Performance 

 
𝑡-statistics 

 
ℎ∗ ℎ∗ + 0.5ℎ𝑀𝐾𝑇 ℎ∗ + ℎ𝑀𝐾𝑇 

 
ℎ∗ ℎ∗ + 0.5ℎ𝑀𝐾𝑇 ℎ∗ + ℎ𝑀𝐾𝑇 

Mean -0.0839 0.2889 0.4724 
 

-0.7286 1.5947 2.4692 

StdDev 0.2680 0.3447 0.4168 
 

1.5176 1.4563 1.4438 

(𝑡-stat) (-1.487) (3.980) (5.383) 
  

          

99% 0.5424 1.4189 1.9912 
 

2.7262 5.0331 6.0327 

95% 0.3215 0.8744 1.1629 
 

1.8065 3.9703 4.8819 

90% 0.2063 0.7058 0.9627 
 

1.2286 3.4759 4.3607 

75% 0.0364 0.4394 0.6507 
 

0.2899 2.5770 3.4205 

Median -0.0866 0.2174 0.3753 
 

-0.7565 1.5263 2.4066 

25% -0.2015 0.0829 0.2119 
 

-1.7059 0.6696 1.5284 

10% -0.3333 -0.0235 0.0948 
 

-2.6708 -0.1833 0.7152 

5% -0.4451 -0.1086 0.0207 
 

-3.2540 -0.8038 0.1600 

1% -0.7944 -0.3439 -0.1702 
 

-4.3803 -1.8938 -0.9180 

 
Panel B: Performance Proportions 

 

  
ℎ∗ ℎ∗ + 0.5ℎ𝑀𝐾𝑇 ℎ∗ + ℎ𝑀𝐾𝑇 

Performance %𝛼̅𝑀𝐹 > 0 31.19 (0.00) 87.87 (0.00) 95.87 (0.00) 

Sign %𝛼̅𝑀𝐹 < 0 68.81 12.13 4.13 

Performance %𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 > 0 3.73 (0.01) 39.02 (0.00) 63.35 (0.00) 

Significance %𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 < 0 20.03 (0.00) 0.90 (0.00) 0.29 (0.00) 

BSW Classification 

Adjusted for  

False Discoveries  

Zero alpha 58.95 49.19 12.25 

Unskilled 38.28 0.00 0.00 

Skilled 2.78 50.81 87.75 

FC Classification 

Adjusted for 

False Discoveries 

Zero alpha 75.02 48.88 17.19 

Unskilled 24.98 0.00 0.00 

Skilled 0.00 51.12 82.81 
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Table 2.6: Best Clientele Alphas Using the RF + MKT Passive Portfolio Set 
Table 2.6 shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with two best 

clientele performance measures, allowing for maximum Sharpe ratios of ℎ∗ + 0.5ℎ𝑀𝐾𝑇 and ℎ∗ + ℎ𝑀𝐾𝑇 (see 

definition in section 2.3.2), and with the LOP measure (denoted by ℎ∗), using the risk-free rate and the market 

portfolio (RF + MKT) as basis assets. Panel A provides the mean, standard deviation (StdDev) and selected 

percentiles of the distributions of estimated alphas (columns under Performance) and their corresponding t-

statistics (columns under t-statistics). It also reports the t-statistics (t-stat) on the significance of the mean of 

the estimated alphas (see test description in section 2.3.3). Panel B gives proportions of estimated alphas that 

are positive (%𝛼̅𝑀𝐹 > 0), negative (%𝛼̅𝑀𝐹 < 0), significantly positive (%𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 > 0), and significantly 

negative (%𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 < 0). It also provides proportions adjusted for false discoveries according to the 

BSW and FC classifications (see description in section 2.3.3), i.e., proportions of zero alpha, unskilled and 

skilled funds. It finally presents the p-values (in parentheses) for the likelihood ratio tests (see description in 

section 2.3.3) that the proportions of positive estimated alphas are equal to 50%, and the proportions of 

significantly positive and significantly negative estimated alphas are equal to 2.5%. The data (see description 

in Table 2.1) cover the period January 1984-December 2012. All statistics are in percentage except the t-

statistics. 

Panel A: Performance and 𝒕-statistics of Individual Mutual Funds 

 
Performance 

 
𝑡-statistics 

 
ℎ∗ ℎ∗ + 0.5ℎ𝑀𝐾𝑇 ℎ∗ + ℎ𝑀𝐾𝑇 

 
ℎ∗ ℎ∗ + 0.5ℎ𝑀𝐾𝑇 ℎ∗ + ℎ𝑀𝐾𝑇 

Mean -0.0683 0.2703 0.4703 
 

-0.3830 1.1799 1.9011 

StdDev 0.2747 0.3034 0.3655 
 

1.1960 1.1825 1.1831 

(𝑡-stat) (-1.180) (4.231) (6.110) 
  

          

99% 0.4663 1.1161 1.6469 
 

2.2969 3.9490 4.8580 

95% 0.2957 0.7570 1.0525 
 

1.4196 3.0472 3.8673 

90% 0.2171 0.6252 0.9001 
 

1.0338 2.6149 3.4019 

75% 0.0767 0.4427 0.6824 
 

0.4046 1.9450 2.6431 

Median -0.0515 0.2531 0.4381 
 

-0.3137 1.2177 1.8795 

25% -0.1845 0.0793 0.2136 
 

-1.1147 0.4580 1.1640 

10% -0.3458 -0.0381 0.0829 
 

-1.8898 -0.2371 0.5229 

5% -0.4818 -0.1437 -0.0015 
 

-2.4349 -0.8009 -0.0157 

1% -0.8637 -0.4081 -0.2692 
 

-3.7594 -1.9842 -1.1347 

 
Panel B: Performance Proportions 

 

  
ℎ∗ ℎ∗ + 0.5ℎ𝑀𝐾𝑇 ℎ∗ + ℎ𝑀𝐾𝑇 

Performance %𝛼̅𝑀𝐹 > 0 39.63 (0.00) 86.04 (0.00) 94.94 (0.00) 

Sign %𝛼̅𝑀𝐹 < 0 60.37 13.96 5.06 

Performance %𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 > 0 1.87 (2.50) 24.37 (0.00) 47.31 (0.00) 

Significance %𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 < 0 9.37 (0.00) 1.08 (0.00) 0.22 (0.00) 

BSW Classification 

Adjusted for  

False Discoveries  

Zero alpha 84.41 41.78 15.21 

Unskilled 15.59 0.00 0.00 

Skilled 0.00 58.22 84.79 

FC Classification 

Adjusted for 

False Discoveries 

Zero alpha 91.53 64.46 34.92 

Unskilled 8.47 0.00 0.00 

Skilled 0.00 35.54 65.08 
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Table 2.7: Best Clientele Alphas for Alternative Maximum Sharpe Ratio Choices Using the RF + 10I Passive Portfolio Set 

Table 2.7 shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with six best clientele performance 

measures, allowing for maximum Sharpe ratios of 1.5ℎ∗, 2ℎ∗, ℎ∗ + 0.5ℎ𝑇, ℎ∗ + ℎ𝑇, ℎ∗ + 0.5ℎ𝑇𝑎 and ℎ∗ + ℎ𝑇𝑎 (see definition in 

section 2.5.4), using the risk-free rate and ten industry portfolios (RF + 10I) as basis assets. It provides the mean, standard deviation 

(StdDev) and selected percentiles of the distributions of estimated alphas (columns under Performance) and their corresponding t-

statistics (columns under t-statistics). It also reports the t-statistics (t-stat) on the significance of the mean of the estimated alphas (see 

test description in section 2.3.3). The data (see description in Table 2.1) cover the period January 1984-December 2012. All statistics 

are in percentage except the t-statistics.  

Performance and 𝒕-statistics of Individual Mutual Funds 

 
Performance 

 
𝑡-statistics 

 
1.5ℎ∗ 2ℎ∗ ℎ∗ + 0.5ℎ𝑇 ℎ∗ + ℎ𝑇 ℎ∗ + 0.5ℎ𝑇𝑎 ℎ∗ + ℎ𝑇𝑎 

 
1.5ℎ∗ 2ℎ∗ ℎ∗ + 0.5ℎ𝑇 ℎ∗ + ℎ𝑇 ℎ∗ + 0.5ℎ𝑇𝑎 ℎ∗ + ℎ𝑇𝑎 

Mean 0.4493 0.7973 0.4312 0.7669 0.2972 0.5428 
 

1.9078 2.9954 1.8554 2.9386 1.3012 2.2612 

StdDev 0.4197 0.5924 0.4127 0.5744 0.3571 0.4638 
 

1.3900 1.3804 1.4022 1.3971 1.4220 1.3934 

(𝑡-stat) (5.083) (6.392) (4.961) (6.341) (3.953) (5.557) 
 

                    

99% 1.8227 2.8781 1.8027 2.7665 1.4215 2.1207 
 

5.3865 6.5569 5.3976 6.5673 4.8006 5.8459 

95% 1.1659 1.8490 1.1321 1.7692 0.8968 1.3376 
 

4.2270 5.4629 4.2018 5.4228 3.6333 4.6873 

90% 0.9781 1.5523 0.9554 1.4971 0.7342 1.1374 
 

3.5974 4.7727 3.5349 4.7671 3.0294 4.0023 

75% 0.6834 1.1134 0.6655 1.0742 0.4995 0.8020 
 

2.7638 3.8115 2.7182 3.7946 2.2002 3.0911 

Median 0.3694 0.6661 0.3471 0.6416 0.2340 0.4455 
 

1.9116 2.9080 1.8529 2.8461 1.3327 2.2237 

25% 0.1518 0.3558 0.1417 0.3359 0.0592 0.2075 
 

1.0726 2.1229 1.0197 2.0424 0.4554 1.4120 

10% 0.0198 0.1967 0.0113 0.1896 -0.0668 0.0696 
 

0.1690 1.3675 0.1077 1.2541 -0.5156 0.5470 

5% -0.0579 0.1241 -0.0793 0.1171 -0.1541 -0.0044 
 

-0.4036 0.8194 -0.5104 0.7237 -1.1268 -0.0315 

1% -0.2559 -0.0336 -0.2503 -0.0190 -0.3882 -0.1543 
 

-1.4611 -0.1925 -1.5536 -0.1024 -2.2417 -0.9806 
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Table 2.8: Bootstrap p-values and Proportions Using the RF + 10I Passive Portfolio 

Set 
Table 2.8 shows statistics on the cross-sectional distribution of bootstrap 𝑝-values for alphas 

estimated with two best clientele performance measures, allowing for maximum Sharpe ratios of 

ℎ∗ + 0.5ℎ𝑀𝐾𝑇 and ℎ∗ + ℎ𝑀𝐾𝑇 (see definition in section 2.3.2), and with the LOP measure 

(denoted by ℎ∗), using the risk-free rate and ten industry portfolios (RF + 10I) as basis assets. Panel 

A provides the mean, standard deviation (StdDev) and selected percentiles of the distributions of 

the bootstrap 𝑝-values. Panel B gives proportions of alphas that are significantly positive 

(%𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 > 0) and significantly negative (%𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 < 0) using the bootstrap p-values. It 

also provides proportions adjusted for false discoveries, i.e., proportions of zero alpha, unskilled 

and skilled funds, based on the simulated critical values for the t-statistics that correspond to the 

size used for the BSW or FC classifications (see description in section 2.3.3). It finally presents the 

p-values (in parentheses) for the likelihood ratio tests (see description in section 2.3.3) that the 

proportions of significantly positive and significantly negative estimated alphas are equal to 2.5%. 

The data (see description in Table 2.1) cover the period January 1984-December 2012. All statistics 

are in percentage.  

Panel A: Bootstrap Performance 𝒑-values  

  
ℎ∗ ℎ∗ + 0.5ℎ𝑀𝐾𝑇 ℎ∗ + ℎ𝑀𝐾𝑇 

Mean  32.19 32.13 19.20 

StdDev  31.43 30.88 26.23 

     

99%  98.80 98.40 96.00 

95%  91.60 91.80 80.80 

90%  82.80 82.40 62.60 

75%  56.80 56.60 29.60 

Median  21.80 21.80 5.94 

25%  3.20 4.20 0.40 

10%  0.20 0.40 0.00 

5%  0.00 0.00 0.00 

1%  0.00 0.00 0.00 

Panel B: Bootstrap Performance Proportions 

  ℎ∗ ℎ∗ + 0.5ℎ𝑀𝐾𝑇 ℎ∗ + ℎ𝑀𝐾𝑇 

Performance %𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 > 0  0.93 (0.00) 22.47 (0.00) 46.73 (0.00) 

Significance %𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 < 0  28.46 (0.00) 4.31 (0.00) 1.08 (0.00) 

BSW Classification 

Adjusted for  

False Discoveries  

Zero alpha  52.18 58.22 27.40 

Unskilled  47.82 0.00 0.00 

Skilled  0.00 41.78 72.60 

FC Classification 

Adjusted for 

False Discoveries 

Zero alpha 69.19 68.71 38.47 

Unskilled 30.81 0.00 0.00 

Skilled 0.00 31.29 61.53 
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Table 2.9: Zero-Alpha Implied Maximum Sharpe Ratios 

Table 2.9 shows statistics on the cross-sectional distribution of monthly maximum Sharpe ratios implied by fixing the best clientele 

alpha at zero (denoted by 𝛼̅𝑀𝐹 = 0), attainable monthly optimal Sharpe ratios of the passive portfolios (denoted by Basis Assets), and 

differences between both Sharpe ratios (denoted by Difference), using the risk-free rate and either ten industry portfolios, six style 

portfolios or the market portfolio as basis assets. It provides the mean, standard deviation (StdDev) and selected percentiles of the 

distributions of the values. The data (see description in Table 2.1) cover the period January 1984-December 2012.  

Sharpe Ratios 

 
Ten Industry Portfolios 

 
Six Style Portfolios 

 
Market Portfolio 

 
𝛼̅𝑀𝐹 = 0 Basis Assets Difference 

 
𝛼̅𝑀𝐹 = 0 Basis Assets Difference 

 
𝛼̅𝑀𝐹 = 0 Basis Assets Difference 

Mean 0.2983 0.2571 0.0412 
 

0.3087 0.2790 0.0296 
 

0.1480 0.1146 0.0335 

StdDev 0.0718 0.0408 0.0576 
 

0.0556 0.0275 0.0449 
 

0.0588 0.0383 0.0485 

            
99% 0.5746 0.4628 0.2591 

 
0.5384 0.3643 0.2186 

 
0.3510 0.2713 0.2549 

95% 0.4527 0.3002 0.1622 
 

0.4119 0.3267 0.1135 
 

0.2648 0.1626 0.1305 

90% 0.3868 0.2838 0.1136 
 

0.3676 0.3103 0.0763 
 

0.2158 0.1484 0.0869 

75% 0.3169 0.2692 0.0538 
 

0.3223 0.2847 0.0373 
 

0.1665 0.1270 0.0428 

Median 0.2765 0.2528 0.0182 
 

0.2924 0.2761 0.0134 
 

0.1334 0.1171 0.0150 

25% 0.2539 0.2364 0.0038 
 

0.2777 0.2677 0.0033 
 

0.1170 0.0965 0.0034 

10% 0.2397 0.2214 0.0006 
 

0.2674 0.2515 0.0005 
 

0.0944 0.0700 0.0006 

5% 0.2293 0.2147 0.0002 
 

0.2540 0.2367 0.0001 
 

0.0788 0.0593 0.0001 

1% 0.2135 0.1895 0.0000 
 

0.2356 0.2276 0.0000 
 

0.0522 0.0100 0.0000 

 

 



 

75 

Table 2.10: Worst Clientele Alphas Using the RF + 10I Passive Portfolio Set 
Table 2.10 shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with two 

worst clientele performance measures, allowing for maximum Sharpe ratios of ℎ∗ + 0.5ℎ𝑀𝐾𝑇 and ℎ∗ +
ℎ𝑀𝐾𝑇 (see definition in section 2.3.2), and with the LOP measure (denoted by ℎ∗), using the risk-free rate 

and ten industry portfolios (RF + 10I) as basis assets. Panel A provides the mean, standard deviation (StdDev) 

and selected percentiles of the distributions of estimated alphas (columns under Performance) and their 

corresponding t-statistics (columns under t-statistics). It also reports the t-statistics (t-stat) on the significance 

of the mean of the estimated alphas (see test description in section 2.3.3). Panel B gives proportions of 

estimated alphas that are positive (%𝛼̅𝑀𝐹 > 0), negative (%𝛼̅𝑀𝐹 < 0), significantly positive 

(%𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 > 0), and significantly negative (%𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 < 0). It also provides proportions adjusted for 

false discoveries according to the BSW and FC classifications (see description in section 2.3.3), i.e., 

proportions of zero alpha, unskilled and skilled funds. It finally presents the p-values (in parentheses) for the 

likelihood ratio tests (see description in section 2.3.3) that the proportions of positive estimated alphas are 

equal to 50%, and the proportions of significantly positive and significantly negative estimated alphas are 

equal to 2.5%. The data (see description in Table 2.1) cover the period January 1984-December 2012. All 

statistics are in percentage except the t-statistics.  

Panel A: Performance and 𝒕-statistics of Individual Mutual Funds 

 
Performance 

 
𝑡-statistics 

 
ℎ∗ ℎ∗ + 0.5ℎ𝑀𝐾𝑇 ℎ∗ + ℎ𝑀𝐾𝑇 

 
ℎ∗ ℎ∗ + 0.5ℎ𝑀𝐾𝑇 ℎ∗ + ℎ𝑀𝐾𝑇 

Mean -0.1789 -0.5938 -0.8014 
 

-1.2291 -3.5688 -4.4825 

StdDev 0.2707 0.3883 0.4796 
 

1.4743 1.4261 1.4545 

(𝑡-stat) (-3.138) (-7.261) (-7.936) 
 

 

  

        

99% 0.3580 -0.0667 -0.1978 
 

2.0211 -0.5195 -1.5281 

95% 0.1787 -0.1978 -0.3185 
 

1.0473 -1.3712 -2.2725 

90% 0.0967 -0.2572 -0.3861 
 

0.5435 -1.8549 -2.7444 

75% -0.0364 -0.3625 -0.5015 
 

-0.2258 -2.5970 -3.4673 

Median -0.1630 -0.5140 -0.6903 
 

-1.1398 -3.4628 -4.3675 

25% -0.2854 -0.7159 -0.9670 
 

-2.1715 -4.4925 -5.3940 

10% -0.4501 -1.0216 -1.3558 
 

-3.1627 -5.3940 -6.3130 

5% -0.5978 -1.2511 -1.6315 
 

-3.6814 -6.0399 -7.0541 

1% -0.9247 -1.8508 -2.3907 
 

-4.8763 -7.2135 -8.2666 

 
Panel B: Performance Proportions 

 

  
ℎ∗ ℎ∗ + 0.5ℎ𝑀𝐾𝑇 ℎ∗ + ℎ𝑀𝐾𝑇 

Performance %𝛼̅𝑀𝐹 > 0 20.32 (0.00) 0.39 (0.00) 0.04 (0.00) 

Sign %𝛼̅𝑀𝐹 < 0 79.68 99.61 99.96 

Performance %𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 > 0 1.04 (0.00) 0.00 (0.00) 0.00 (0.00) 

Significance %𝛼̅𝑀𝐹𝑠𝑖𝑔𝑛𝑖𝑓 < 0 29.54 (0.00) 88.69 (0.00) 97.38 (0.00) 

BSW Classification 

Adjusted for 

False Discoveries 

Zero alpha 49.49 1.56 0.00 

Unskilled 50.51 98.44 99.96 

Skilled 0.00 0.00 0.04 

FC Classification 

Adjusted for 

False Discoveries 

Zero alpha 67.16 8.13 1.37 

Unskilled 32.84 91.87 98.63 

Skilled 0.00 0.00 0.00 
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Table 2.11: Total Performance Disagreement 
Table 2.11 shows statistics on the cross-sectional distribution of monthly total performance 

disagreement from the best and worst clientele performance measures with a maximum Sharpe ratio 

of ℎ∗ + 0.5ℎ𝑀𝐾𝑇 (see definition in section 2.3.2), using the risk-free rate and either ten industry 

portfolios, six style portfolios or the market portfolio as basis assets. It provides the mean, standard 

deviation (StdDev) and selected percentiles of the distributions of estimated total disagreement 

values (columns under Value) and their corresponding t-statistics (columns under t-statistics). It 

also reports the t-statistics (t-stat) on the significance of the mean of the estimated disagreement 

values. Total performance disagreement is defined as the difference between best and worst 

clientele alphas. The data (see description in Table 2.1) cover the period January 1984-December 

2012. All statistics are in percentage except the t-statistics. 

Total Disagreement 

 
Ten Industry Portfolios 

 
Six Style Portfolios 

 
Market Portfolio 

 
Value t-statistics 

 
Value t-statistics 

 
Value t-statistics 

Mean 0.8297 6.3779 
 

0.7455 6.5374 
 

0.6770 5.4709 

StdDev 0.4818 1.8945 
 

0.4177 1.7208 
 

0.3732 1.8587 

(𝑡-stat) (8.179) 
  

(8.477) 
  

(8.615) 
 

         
99% 2.6483 10.9180 

 
2.7855 10.7928 

 
2.2666 10.1666 

95% 1.7199 9.6564 
 

1.3909 9.4813 
 

1.3370 8.8657 

90% 1.4243 8.9265 
 

1.1522 8.8512 
 

1.1325 8.0961 

75% 1.0413 7.6173 
 

0.8576 7.5729 
 

0.8104 6.7388 

Median 0.7015 6.2729 
 

0.6630 6.4852 
 

0.5982 5.2337 

25% 0.4761 5.0391 
 

0.4985 5.3896 
 

0.4384 4.0360 

10% 0.3779 3.9845 
 

0.3901 4.4984 
 

0.3112 3.2524 

5% 0.3387 3.3579 
 

0.3458 3.8592 
 

0.2657 2.8132 

1% 0.2736 2.3733 
 

0.2690 2.1814 
 

0.1755 2.2428 
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Appendix 2.A: Additional Results on Alternative Maximum Sharpe Ratio Choices 

Table 2.A1: Best Clientele Alphas for Alternative Maximum Sharpe Ratio Choices Using the RF + 6S Passive Portfolio Set 
Table 2.A1 shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with six best clientele performance measures, 

allowing for maximum Sharpe ratios of 1.5ℎ∗, 2ℎ∗, ℎ∗ + 0.5ℎ𝑇, ℎ∗ + ℎ𝑇, ℎ∗ + 0.5ℎ𝑇𝑎 and ℎ∗ + ℎ𝑇𝑎 (see definition in section 2.5.4), using the 

risk-free rate and six style portfolios (RF + 6S) as basis assets. It provides the mean, standard deviation (StdDev) and selected percentiles of the 

distributions of estimated alphas (columns under Performance) and their corresponding t-statistics (columns under t-statistics). It also reports the t-

statistics (t-stat) on the significance of the mean of the estimated alphas (see test description in section 2.3.3). The data (see description in Table 

2.1) cover the period January 1984-December 2012. All statistics are in percentage except the t-statistics. 

Performance and t-statistics of Individual Mutual Funds 

 
Performance 

 
t-statistics 

 
1.5ℎ∗ 2ℎ∗ ℎ∗ + 0.5ℎ𝑇 ℎ∗ + ℎ𝑇 ℎ∗ + 0.5ℎ𝑇𝑎 ℎ∗ + ℎ𝑇𝑎 

 
1.5ℎ∗ 2ℎ∗ ℎ∗ + 0.5ℎ𝑇 ℎ∗ + ℎ𝑇 ℎ∗ + 0.5ℎ𝑇𝑎 ℎ∗ + ℎ𝑇𝑎 

Mean 0.5070 0.8336 0.5032 0.8272 0.4460 0.7300 

 

2.6056 3.6689 2.5965 3.6593 2.3555 3.3887 

StdDev 0.4290 0.5826 0.4300 0.5815 0.4057 0.5343 

 

1.4315 1.4607 1.4440 1.4732 1.4441 1.4607 

(𝑡-stat) (5.612) (6.795) (5.557) (6.755) (5.222) (6.489) 

                     

99% 2.0568 3.0482 2.0701 2.9757 1.9312 2.6753 

 

6.1934 7.4169 6.1807 7.3761 5.9092 7.0363 

95% 1.2594 1.8209 1.2278 1.7985 1.1265 1.6204 

 

5.0098 6.1325 5.0009 6.1443 4.7509 5.8024 

90% 1.0066 1.4777 1.0080 1.4722 0.9228 1.3332 

 

4.4851 5.5998 4.4896 5.6057 4.2352 5.3185 

75% 0.6886 1.0655 0.6868 1.0549 0.6203 0.9451 

 

3.5186 4.5684 3.5481 4.5700 3.3115 4.3208 

Median 0.4074 0.6936 0.4028 0.6901 0.3529 0.6033 

 

2.5387 3.6057 2.5349 3.5986 2.2913 3.3433 

25% 0.2371 0.4592 0.2327 0.4545 0.1928 0.3902 

 

1.6615 2.6673 1.6476 2.6374 1.4268 2.3905 

10% 0.1154 0.3101 0.1132 0.3034 0.0798 0.2483 

 

0.8503 1.8516 0.8314 1.8336 0.6052 1.5958 

5% 0.0509 0.2361 0.0394 0.2296 0.0053 0.1748 

 

0.3139 1.4199 0.3067 1.3465 0.0305 1.1069 

1% -0.1142 0.0961 -0.1449 0.0646 -0.1918 0.0151 

 

-0.7048 0.5640 -0.7545 0.4216 -1.0606 0.1196 
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Table 2.A2: Best Clientele Alphas for Alternative Maximum Sharpe Ratio Choices 

Using the RF + MKT Passive Portfolio Set 

Table 2.A2 shows statistics on the cross-sectional distribution of monthly SDF alphas 

estimated with two best clientele performance measures, allowing for maximum Sharpe 

ratios of 1.5ℎ∗ and 2ℎ∗ (see definition in section 2.5.4), using the risk-free rate and the 

market portfolio (RF + MKT) as basis assets. It provides the mean, standard deviation 

(StdDev) and selected percentiles of the distributions of estimated alphas (columns under 

Performance) and their corresponding t-statistics (columns under t-statistics). It also reports 

the t-statistics (t-stat) on the significance of the mean of the estimated alphas (see test 

description in section 2.3.3). The data (see description in Table 2.1) cover the period 

January 1984-December 2012. All statistics are in percentage except the t-statistics. 

 

Performance and 𝒕-statistics of Individual Mutual Funds 

 
Performance 

 
𝑡-statistics 

 
1.5ℎ∗ 2ℎ∗ 

 
1.5ℎ∗ 2ℎ∗ 

Mean 0.2505 0.4352 

 

1.1110 1.7837 

StdDev 0.3049 0.3757 

 

1.2105 1.2607 

(𝑡-stat) (3.901) (5.501) 

         

99% 1.1289 1.6323 

 

3.9514 4.8521 

95% 0.7287 1.0219 

 

3.0206 3.8211 

90% 0.5985 0.8716 

 

2.5699 3.3744 

75% 0.4220 0.6381 

 

1.8873 2.5850 

Median 0.2280 0.4002 

 

1.1412 1.7706 

25% 0.0601 0.1835 

 

0.3614 1.0109 

10% -0.0588 0.0505 

 

-0.3316 0.2718 

5% -0.1636 -0.0524 

 

-0.8830 -0.3185 

1% -0.4768 -0.3821 

 

-2.2526 -1.6330 
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Figure 2.1: Mean-Standard Deviation Frontiers from the Sets of Passive Portfolio 

Returns 

 

Notes: Figure 2.1 presents mean-standard deviation frontiers of investment opportunities 

from the risk-free rate and either ten industry portfolios (RF+10I), six style portfolios 

(RF+6S) or the market portfolio (RF+MKT) as passive portfolios.  
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Figure 2.2: Histograms of the Best Clientele and LOP Alphas 

 

 
Notes: Figure 2.2 presents histograms illustrating the distributions of the best clientele and LOP 

alpha estimates, using the risk-free rate and ten industry portfolios as basis assets. Figure 2.2a 

illustrates LOP alphas (denoted by ℎ∗) and best clientele alphas allowing for a maximum Sharpe 

ratio of ℎ∗ + 0.5ℎ𝑀𝐾𝑇. Figure 2.2b illustrates LOP alphas and best clientele alphas allowing for a 

maximum Sharpe ratio of ℎ∗ + ℎ𝑀𝐾𝑇. 
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Figure 2.3: Best Clientele and LOP Alphas for Decile Fund Portfolios 

(a) 

  
(b) 

  
(c) 

  
Notes: Figure 2.3 presents best clientele alpha estimates (denoted by ℎ∗ + 0.5ℎ𝑀𝐾𝑇 and ℎ∗ + ℎ𝑀𝐾𝑇) and 

LOP alpha estimates (denoted by ℎ∗) for mutual funds grouped in decile portfolios. In Figure 2.3a, funds are 

sorted in increasing order of their average return. In Figure 2.3b, funds are sorted in increasing order of their 

standard deviation of returns. In Figure 2.3c, funds are sorted in increasing order of their Sharpe ratio. 
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3 Representative Investors versus Best Clienteles: Performance Evaluation 

Disagreement in Mutual Funds 

 

Abstract 

The paper examines performance disagreement in mutual funds and develops a diagnostic 

tool for candidate performance models. We compare the evaluation for best clienteles, as 

specified by an upper admissible performance bound, to the one for representative investors 

implicit in twelve models. Empirical results show that the linear factor models are the most 

severe in their assessment because they significantly undervalue the best clientele alphas. 

Consumption-based models provide alphas that tend to be inadmissible because they are 

too high. The manipulation proof performance measure generates alphas that are sensitive 

to the choice of risk aversion parameter and difficult to estimate with statistical precision. 

However, a reasonable risk aversion parameter generally gives admissible values that 

adequately reflect the alphas for the most favorable clienteles. Our results support an 

economically important role for performance evaluation disagreement in mutual funds.    

 

Keywords: Portfolio Performance Measurement; Performance Disagreement; Performance 

Manipulation; Mutual Funds 
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Résumé 

Cet article examine le désaccord entre investisseurs dans les fonds mutuels et développe un 

outil pour diagnostiquer des modèles de performance candidats. Nous comparons 

l’évaluation pour les meilleures clientèles, spécifiée par une borne supérieure de 

performance, à celle pour les investisseurs représentatifs implicites dans douze modèles. 

Les résultats empiriques montrent que les modèles linéaires à facteurs sont les plus sévères 

puisqu’ils sous-évaluent significativement les alphas des meilleures clientèles. Les modèles 

de consommation procurent des alphas qui ont tendance à être inadmissibles puisque trop 

élevés. La mesure de performance à l’abri de manipulation génère des alphas qui sont 

sensibles au choix du paramètre d’aversion au risque et difficiles à estimer avec précision 

statistique. Toutefois, un paramètre d’aversion au risque raisonnable donne généralement 

des alphas admissibles qui reflètent adéquatement les alphas des clientèles les plus 

favorables. Les résultats supportent un rôle économique important pour le désaccord entre 

investisseurs dans l’évaluation de performance des fonds mutuels. 
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3.1 Introduction  

Disagreement is undoubtedly a part of life. In politics, voters often disagree about the best 

policies for their country and are attracted to various political options based on their beliefs. 

In sports, fans are passionate about their teams and often dislike their rival teams. At home, 

households disagree on how to raise children, what goods are needed for consumption, 

where to spend their leisure time, etc. In fact, in many instances, it is not uncommon for 

people to “agree to disagree”. Similarly, in portfolio choice, investors clearly disagree on 

what investments are the most valuable for their portfolios.  

Recently, Ferson and Lin (2014) demonstrate the large and significant effects of 

investor disagreement on the performance evaluation of equity mutual funds. In particular, 

they develop bounds on the expected disagreement with a traditional alpha and document 

average monthly values from 0.21% to 0.38%. Given these values, they argue that the 

effect of investor heterogeneity on alpha could be as important as the already well 

documented effects of the benchmark choice or statistical imprecision of estimates. Their 

study is part of a growing literature on studying specific types of investor heterogeneity and 

clienteles in the mutual fund sector (i.e., Nanda, Narayanan and Warther, 2000; Malloy and 

Zhu, 2004, Barber, Odean and Zheng, 2005, Bergstresser, Chalmers and Tufano, 2009; 

Nanda, Wang and Zheng, 2009, Bailey, Kumar and Ng, 2011; Christoffersen, Evans and 

Musto, 2013; Del Guercio and Reuter, 2014), and calls for more research on the issue.  

In this paper, we examine performance evaluation disagreement in mutual funds 

with a new approach. We compare alphas from standard measures with an alpha from a 

measure that values a fund from the point of view of their most favorable investors. This 

latter evaluation, termed the “best clientele alpha” by Chrétien and Kammoun (2015), is 

obtained by estimating the upper admissible performance bound under the law-of-one-price 

and no-good-deal conditions, a framework initially developed by Cochrane and Saá-

Requejo (2000) to bound option prices. This paper thus studies performance disagreement 

between two important groups of investors: representative investors, on whom standard 

measures typically rely for evaluation, versus best clienteles, who are potentially the most 

valuable targets for funds that cater to specific clienteles.  
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Apart from developing a new measure of alpha disagreement, our approach 

provides an interesting diagnostic tool for candidate performance models. When alphas for 

representative investors and best clienteles are not equal, two alternative hypotheses are 

insightful. On one hand, an inadmissibility problem occurs when a candidate alpha is 

greater than the upper admissible bound that is the best clientele alpha.1 On the other hand, 

an issue we call the misrepresentation problem occurs when a candidate alpha is lower than 

the best clientele alpha, because the candidate alpha provides a “severe” or “pessimistic” 

evaluation of the fund that does not adequately reflect the more useful evaluation from its 

best potential clienteles. The misrepresentation problem is indicative of large investor 

disagreement in performance evaluation. 

Given the abundance of performance measures, there is not only a need for 

evaluating the measures themselves, but our approach is also uniquely positioned compared 

with the simulation approach typically used in the literature. Kothari and Warner (2001), 

Farsnwoth, Ferson, Jackson and Todd (2002), Kosowski, Timmermann, Wermers and 

White (2006) and Chrétien, Coggins and d’Amours (2015) are examples of studies that rely 

on fictitious managers to assess the ability of various performance measures. In comparison 

to these studies, our diagnostic tool provides a different perspective on the appropriateness 

of performance measures that is more in line with the bound approach initiated by Hansen 

and Jagannathan (1991) for asset pricing models.   

Empirically, we perform our investigation on twelve candidate models: four 

unconditional linear factor models (the CAPM and the models of Fama and French (1993), 

Carhart (1997) and Ferson and Schadt (1996)), four conditional linear factor models 

(conditional versions of the previous four models), two consumption-based models (a 

power utility model and an external habit-formation preference model first examined by 

Cochrane and Hansen (1992)), the manipulation proof performance measure (MPPM) of 

Goetzmann, Ingersoll, Spiegel and Welch (2007) and the nonparametric law-of-one-price 

(LOP) measure of Chen and Knez (1996). We use a sample of 2786 actively-managed 

                                                 
1 See Chen and Knez (1996) for the minimum set of requirements for the admissibility of performance 

measures and Hansen and Jagannathan (1991) for a classic diagnostic tool on the admissibility of asset pricing 

models.  
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open-ended U.S. equity mutual funds with returns from 1984 to 2012. Our implementation 

of the MPPM is particularly noteworthy because it is the first to provide monthly effective 

MPPM alpha estimates, their standard errors and their 𝑡-statistics for a large sample of 

equity mutual funds. To our knowledge, no estimation strategy allowing for statistical 

inferences on the significance of the performance values exists in the MPPM literature.  

The empirical results can be summarized as follows. The comparison between the 

candidate and best clientele alphas shows that many standard measures misrepresent the 

value of mutual funds for their most favorable clienteles. Specifically, the unconditional 

linear factor models, their conditional versions, the MPPM with high risk aversion 

parameter and the LOP measure tend to give a severe but admissible performance 

evaluation. The average performance disagreement between the best clienteles and the 

representative investors from these candidate models, measured by the mean difference 

between their alphas, vary from 0.283% to 0.464%. These statistically significant 

disagreement values are comparable to those in Ferson and Lin (2014) and reaffirm the 

economic importance of their results. Oppositely, the alphas from consumption-based 

models are oftentimes not admissible because they are too high. Among all models, the 

MPPM with a low risk aversion parameter is most appropriate in providing admissible 

alphas that reflect the value of funds for their best clienteles. 

Our implementation of the MPPM documents three other interesting empirical 

findings. First, the MPPM alphas are relatively sensitive to the choice of risk aversion 

parameter. When the MPPM representative investors have low concerns about risk and 

manipulation, their alphas tend to be positive, but when they have high concerns, their 

alphas are the most negative of all models, consistent with traditional alphas being inflated 

by manipulation for investors who care about it. Second, the MPPM alphas are difficult to 

estimate with statistical precision and the proportions of funds with significant values are 

much lower. Third, the MPPM provides a larger standard deviation of alphas across funds 

compared with the other models because the alpha distributions present a large negative 

skewness. For a small number of funds, manipulation-proofing their performance gives 

significantly lower alphas than their traditional or best clientele alphas.  
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The remainder of this paper is organized as follows. Section 3.2 develops a 

theoretical framework for measuring performance disagreement and assessing the 

appropriateness of candidate measures, and describes the best clientele and standard 

performance measures. Section 3.3 presents the methodology for estimating and comparing 

alphas. Section 3.4 describes the data. Section 3.5 reports and analyzes the empirical 

results. Section 3.6 provides our conclusion.   

3.2 Representative Investors versus Best Clienteles: A Yardstick for Comparison 

This section develops a framework for comparing standard performance measures with a 

measure that accounts for the most favorable clienteles of a fund, and for assessing their 

disagreement. First, we provide a general setup within which the performance measures can 

be understood, and provide null and alternative hypotheses for their comparison. Second, 

we develop the best clientele performance measure that serves as a basis for comparison. 

Third, we present standard performance measures that are considered candidate models for 

diagnosis in this study.  

3.2.1 A Framework for Performance Evaluation and Comparison 

This paper uses the stochastic discount factor (hereafter SDF) performance evaluation 

approach first examined by Glosten and Jagannathan (1994) and Chen and Knez (1996). 

Ferson (2010) summarizes its benefits. In this approach, the SDF alpha is defined from the 

following equation:  

(1) 𝛼𝑖,𝑀𝐹 = 𝐸[𝑚𝑖𝑡 𝑅𝑀𝐹𝑡] − 1, 

where 𝑚𝑖𝑡 is the SDF at time 𝑡 of investor 𝑖 interested in valuing the mutual fund with 

gross return 𝑅𝑀𝐹𝑡, and 𝛼𝑖,𝑀𝐹 is her average performance evaluation or alpha. In asset 

pricing, the SDF is the investor’s intertemporal marginal rate of substitution. An intuitive 

interpretation of this equation is thus that the “marginal preferences” of investor 𝑖 

determine her alpha.  
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As preferences vary by investor, this equation leads to a performance evaluation that 

differs by investor. In fact, under general conditions with an incomplete market and 

potentially heterogeneous preferences, Chen and Knez (1996) show that there is an infinite 

number of SDFs, and argue that the alpha disagreement they generate might not be 

unrealistic. Empirically, Ferson and Lin (2014) and Chrétien and Kammoun (2015) find 

that such disagreement is economically important. Let 𝑀 be the set of SDFs for all 

investors. This paper is interested in studying the performance disagreement between two 

important groups of investors within that set.  

The first group, called representative investors, considers the SDF of “average” (or 

more precisely marginal) investors obtained under restrictive assumptions. By making 

assumptions on preferences, return distributions and/or market completeness, equilibrium 

or no arbitrage conditions lead to a unique parametric SDF that represents all investors and 

can be used for performance evaluation. We denote by 𝑚𝜑𝑡(𝛉) such a SDF and by 

𝛼𝜑,𝑀𝐹(𝛉) its resulting alpha, where we explicitly acknowledge their parametric nature by 

making them dependent on a vector 𝛉 of parameters. For example, the celebrated CAPM 

implies a representative investor with a SDF linear in the market portfolio return. Most 

studies focus exclusively on this group of investors for performance evaluation because 

they rely on parametric SDFs derived from commonly-used asset pricing models. The main 

advantage of these SDFs is that they provide unique point estimates for fund evaluation that 

are relevant for “average” investors.   

The second group, called best clienteles, represents investors that value the fund the 

most favorably. This group is potentially the most important for mutual funds that, in 

practice, cater to different clienteles through their management style and other attributes, 

instead of simply marketing themselves to “average” investors. By making minimal 

assumptions on the set 𝑀, so that it includes only SDFs admissible under selected criteria, 

Chen and Knez (1996), Ahn, Cao and Chrétien (2009) and Chrétien and Kammoun (2015) 

show that there is an upper bound on the performance of a fund:  
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(2) 𝛼̅𝐵𝐶,𝑀𝐹 = 𝑠𝑢𝑝
𝑚𝑖∈𝑀

𝐸[𝑚𝑖𝑡 𝑅𝑀𝐹𝑡] − 1. 

The solution to this problem is a nonparametric performance evaluation measure 

termed the “best clientele measure” by Chrétien and Kammoun (2015), with its 

corresponding BC alpha denoted by 𝛼̅𝐵𝐶,𝑀𝐹. It considers the performance from the point of 

view of investors who value the fund the most favorably, i.e. best potential clienteles of a 

fund. It also has the added benefit that it is admissible under the minimum set of 

requirements of Chen and Knez (1996), and thus represents an upper bound restriction that 

all performance measures should meet for admissibility.  

Given these positive attributes, this paper uses the BC alpha 𝛼̅𝐵𝐶,𝑀𝐹 as a relevant 

yardstick for comparison with a standard performance alpha 𝛼𝜑,𝑀𝐹(𝛉). As null hypothesis, 

we examine if a candidate performance alpha is equal to the BC alpha:  

𝐻0: 𝛼𝜑,𝑀𝐹(𝛉) =  𝛼̅𝐵𝐶,𝑀𝐹 . 

Under this hypothesis, the performance measure 𝜑 gives a performance value that is 

admissible and reflects adequately the value for the most favorable clienteles of the fund. 

Thus, the representative investors behind the parametric SDF 𝜑 give a performance value 

that corresponds to the one for best clienteles, and hence 𝜑 is appropriate for a mutual fund 

that targets such a group. In the case where 𝐻0 does not hold, two alternative hypotheses 

are interesting to understand why the candidate model does not meet this appropriateness 

criteria.  

First, the alpha from a candidate model is higher than the BC alpha:  

𝐻𝑎1: 𝛼𝜑,𝑀𝐹(𝛉) > 𝛼̅𝐵𝐶,𝑀𝐹 . 

If a standard measure provides a performance value significantly higher than the 

value from the upper admissible bound that represents the BC alpha, then it is inadmissible. 

Most likely, as discussed in Chen and Knez (1996), it suffers from the benchmark choice 

problem in that it is unable to correctly price passive portfolios. The related literature 
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(Lehmann and Modest, 1987, Grinblatt and Titman, 1994, Ahn, Cao and Chrétien, 2009, 

Cremers, Petajisto and Zitzewitz, 2013, among others) shows that choosing an inefficient 

benchmark may lead to a biased performance evaluation. The alternative hypothesis 𝐻𝑎1 is 

helpful in detecting when this bias is positive, possibly indicating that the standard measure 

overvalues passive portfolios.  

Hence, the BC alpha 𝛼̅𝐵𝐶,𝑀𝐹 allows a partial diagnosis of such a problem among 

candidate measures, because a positive bias could result in a candidate alpha being above 

the upper bound. This analysis is similar in purpose to the investigation of Hansen and 

Jagannathan (1991), who use a SDF volatility bound to diagnose candidate models in the 

context of asset pricing. It complements the work of Ahn, Cao and Chrétien (2009), who 

propose a conservative check for the benchmark choice problem by comparing a candidate 

alpha with no arbitrage performance bounds and find that such bounds are oftentimes too 

wide to be a useful diagnostic tool.  

Second, the alpha from a candidate model is lower than the BC alpha: 

𝐻𝑎2: 𝛼𝜑,𝑀𝐹(𝛉) < 𝛼̅𝐵𝐶,𝑀𝐹 . 

If a standard measure gives a value that is significantly lower than the value for the 

best clienteles of the fund, then it is admissible but indicates that there is a large 

disagreement in fund evaluation. It implies that the representative investors assumed behind 

the standard models give a “severe” or “pessimistic” fund evaluation, which differs from 

the more useful evaluation that the best potential clienteles would give. We call such an 

outcome the “misrepresentation problem”. The alternative hypothesis 𝐻𝑎2 is thus helpful in 

detecting if the misrepresentation problem is important for candidate measures.2  

By not considering investor disagreement in performance evaluation, the standard 

measures are inappropriate in considering the large set of investors who might be interested 

                                                 
2 As noted by Ahn, Cao and Chrétien (2009), the alpha of a candidate model should also be greater than the 

lower admissible performance bound. It is thus possible that a measure suffers so badly from the 

misrepresentation problem as to render it inadmissible with respect to the lower bound. In section 3.5.7, we 

examine whether this is the case for the candidate models that are empirically found to have the most negative 

performance values.  
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in funds, including their most favorable clienteles. The literature has recently established 

the significance of heterogeneous preferences in mutual fund investors, so that they may 

look differently at the attractiveness of the same fund (see Ahn, Cao and Chrétien, 2009, 

Bailey, Kumar and Ng, 2011, Del Guercio and Reuter, 2013, Ferson and Lin, 2014, and 

Chrétien and Kammoun, 2015). The upper admissible performance bound 𝛼̅𝐵𝐶,𝑀𝐹 allows a 

new analysis of the importance of investor disagreement in mutual fund evaluation and the 

related misrepresentation problem in standard performance models that ignore such a 

possibility.  

3.2.2 Best Clientele Performance Measure 

One key to the analysis of the previous subsection is the BC performance alpha that serves 

as a basis for comparison. Following Cochrane and Saá-Requejo (2000) and Chrétien and 

Kammoun (2015), this subsection presents the development and solution of the BC 

performance measure. These references should be consulted for a more complete analysis.  

The first step to obtain 𝛼̅𝐵𝐶,𝑀𝐹 is to impose a relevant structure on the set of SDFs of 

all investors to achieve a restricted set useful to identify the most favorable clienteles. We 

rely on the literature on asset pricing in incomplete markets to impose two restrictions. The 

first restriction is the law-of-one-price condition (Hansen and Jagannathan, 1991), which 

assumes that mutual fund investors give zero performance to passive portfolios. This 

restriction is equivalent to assuming a minimum variability in SDFs of investors. As 

explained by Chen and Knez (1996), Ahn, Cao and Chrétien (2009) and Chrétien and 

Kammoun (2015), imposing this condition can alleviate the benchmark choice problem. 

The second restriction is the no-good-deal condition, proposed by Cochrane and Saá-

Requejo (2000). This condition assumes that investors do not allow for investment 

opportunities that have too large Sharpe ratios. Such opportunities are deemed too good to 

be viable because investors would quickly profit from them until they disappear. This 

restriction is equivalent to assuming a maximum variability in the SDFs of investors to 

preclude them from allowing implausibly good deals to exist.  

As shown by Cochrane and Saá-Requejo (2000), imposing these two restrictions 

provides an upper bound by solving the following problem:  
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(3) 𝛼̅𝐵𝐶,𝑀𝐹 = 𝑠𝑢𝑝
𝑚𝑖∈𝑀

𝐸[𝑚𝑖𝑡 𝑅𝑀𝐹𝑡] − 1, 

(4) subject to 𝐸[𝑚𝑖𝑡 𝐑𝐊𝐭] = 𝟏, 𝐸[𝑚𝑖𝑡
2 ] ≤  

(1+ℎ̅2)

𝑅𝐹
2 , 

where 𝐸[𝑚𝑖𝑡 𝐑𝐊𝐭] = 𝟏 is law-of-one-price condition, with 𝐑𝐊𝐭 being a vector of gross 

returns on 𝐾 passive portfolios at time 𝑡 and 𝟏 is a 𝐾 × 1 unit vector, and 𝐸[𝑚𝑖𝑡
2 ] ≤  

(1+ℎ̅2)

𝑅𝐹
2  

is the no-good-deal condition, with ℎ̅ being the maximum Sharpe ratio allowed and 𝑅𝐹 

being the gross risk-free rate. Cochrane and Saá-Requejo (2000) demonstrate that this 

problem has the following solution:  

(5) 𝛼̅𝐵𝐶,𝑀𝐹 = 𝐸[𝑚̅𝐵𝐶𝑡𝑅𝑀𝐹𝑡] − 1, 

 

with:  

(6) 𝑚̅𝐵𝐶𝑡 = 𝑚𝐿𝑂𝑃𝑡 + 𝑣𝑤𝑡, 

(7) 𝑚𝐿𝑂𝑃𝑡 = 𝐚′𝐑𝐊𝐭, 

(8) 𝑤𝑡 = 𝑅𝑀𝐹𝑡 − 𝐜′𝐑𝐊𝐭, 

 

where: 

(9) 𝐚′ = 𝟏′𝐸[𝐑𝐊𝐭 𝐑𝐊𝐭
′ ]−1, 
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(10) 𝐜′ = 𝐸[𝑅𝑀𝐹𝑡  𝐑𝐊𝐭
′ ] 𝐸[𝐑𝐊𝐭 𝐑𝐊𝐭

′ ] −1, 

(11) 
𝑣 =

√
(

(1 + ℎ̅2)

𝑅𝐹
2 − 𝐸[𝑚𝑡

∗2])

𝐸[𝑤𝑡
2]

. 

In this solution, 𝑚̅𝐵𝐶𝑡 represents the BC SDF and has two parts. The first part is 

𝑚𝐿𝑂𝑃𝑡, the SDF identified by Hansen and Jagannathan (1991) as having minimum volatility 

under the law-of-one-price condition and used by Chen and Knez (1996) for their LOP 

performance measure. Its volatility corresponds to 𝜎[𝑚𝐿𝑂𝑃𝑡] = ℎ∗ 𝑅𝐹⁄ , where ℎ∗ is the 

optimal Sharpe ratio obtained from passive portfolio returns. The second part is 𝑣𝑤𝑡. The 

replicating error term 𝑤𝑡 represents the difference between the mutual fund return and the 

best replicating payoff that can be constructed from passive portfolio returns. The 

parameter 𝑣 accounts for the no-good-deal restriction and is a function of the maximum 

Sharpe ratio ℎ̅.  

As discussed by Cochrane and Saá-Requejo (2000) and Chrétien and Kammoun 

(2015), there are two sources of investor disagreement within the BC performance measure. 

First, disagreement is increasing in the fund replicating error, so that investors have higher 

disagreement for funds with returns more difficult to span. Second, disagreement is 

increasing in the maximum Sharpe ratio, so that investors have higher disagreement when 

they consider more opportunities as “reasonable” (not being good deals). Finally, two other 

elements about the BC measure are noteworthy. First, it is an admissible measure in the 

sense that it respects the minimum set of requirements established by Chen and Knez 

(1996) for the admissibility of a performance measure (see also Hansen and Jagannathan 

(1991) on the related admissibility of SDFs for asset pricing models). The most important 

requirement is to respect the aforementioned law-of-one-price condition. Second, being an 

upper performance bound, it can be interpreted as the performance from the class of 

investors most favorable to a mutual fund. It is thus possible to evaluate whether a fund 

adds value from the point of view of their best potential clienteles. In particular, Chen and 
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Knez (1996) and Ferson and Lin (2014) show that if this value is positive, there are some 

investors that would want to buy the fund, with an optimal investment proportional to the 

alpha. 

3.2.3 Candidate Performance Evaluation Measures 

This subsection presents the menu of candidate performance measures that we compare 

with the BC measure to analyze their admissibility and disagreement. Although the BC 

measure is valid for evaluating portfolios with any type of assets, we focus on equity 

models because our empirical sample consists of equity mutual funds. We consider various 

classes of models, including linear factor models, conditional models, consumption-based 

models, a manipulation-proof measures and a nonparametric approach.  

3.2.3.1 Unconditional Linear Factor Models 

Return-based linear factor models are the most widely used models in performance 

evaluation. Their SDF is simply a linear function of factors: 

(12) 𝑚𝜑𝑡(𝛉) = 𝜔0 + 𝛚𝟏
′ 𝐟𝐭, 

where 𝐟𝐭 is a vector of factors at time 𝑡.  

The most well-known example of linear factor models is the classic CAPM, which 

implies that the SDF is a linear function of the market portfolio return such that:  

(13) 𝑚𝐶𝐴𝑃𝑀𝑡(𝛉) =  𝑎0 + 𝑎𝑀𝐾𝑇𝑀𝐾𝑇𝑡, 

where 𝑀𝐾𝑇𝑡 is the market factor at time 𝑡 and 𝛉 = {𝑎0, 𝑎𝑀𝐾𝑇} are the parameters. Despite 

its popularity, the CAPM is widely criticized. In particular, Fama and French (1993) 

introduce two factors to better capture the variation of excess returns: the return difference 

between small and big market capitalization portfolios (SMB) and the return difference 

between high and low book-to-market ratio portfolios (HML). To further improve the 
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Fama-French model, Carhart (1997) includes a momentum factor (MOM), defined as the 

return difference between the winner and loser portfolios based on the prior one-year 

return. The SDFs implied by these models are expressed, respectively, as follows: 

(14) 𝑚𝐹𝐹𝑡(𝛉) =  𝑏0 + 𝑏𝑀𝐾𝑇(𝑀𝐾𝑇𝑡 − 𝑟𝑓𝑡) + 𝑏𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝑏𝐻𝑀𝐿𝐻𝑀𝐿𝑡, 

(15) 
𝑚𝐶𝐴𝑅𝐻𝐴𝑅𝑇𝑡(𝛉) =  𝑐0 + 𝑐𝑀𝐾𝑇(𝑀𝐾𝑇𝑡 − 𝑟𝑓𝑡) + 𝑐𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝑐𝐻𝑀𝐿𝐻𝑀𝐿𝑡 +

𝑐𝑀𝑂𝑀𝑀𝑂𝑀𝑡, 

where 𝑟𝑓𝑡 is the net risk free return. Ferson and Schadt (1996) propose other factors to 

evaluate mutual fund performance: returns on large stocks (LS), small stocks (SS), long-

term government bonds (LTGB) and low-grade corporate bonds (LGCB), with a resulting 

SDF given by:  

(16) 𝑚𝐹𝑆𝑡(𝛉) =  𝑑0 + 𝑑𝐿𝑆𝐿𝑆𝑡 + 𝑑𝑆𝑆𝑆𝑆𝑡 + 𝑑𝐿𝑇𝐺𝐵𝐿𝑇𝐺𝐵𝑡 + 𝑑𝐿𝐺𝐶𝐵𝐿𝐺𝐶𝐵𝑡. 

Although many other linear factor models exist, these models are the most common 

in performance evaluation of equity portfolios.  

3.2.3.2 Conditional Linear Factor Models 

To account for time-varying economic conditions in financial markets, Ferson and Schadt 

(1996) advocate conditional versions of linear factor models that assume that factor 

coefficients are linear functions of publicly available information variables. The conditional 

SDF of a linear factor model has the following general form:  

(17) 𝑚𝐶𝜑𝑡(𝛉) = 𝛽0 + 𝛃𝟏(𝐙𝐭−𝟏)′𝐟𝐭, 

where 𝛃𝟏(𝐙𝐭−𝟏) = 𝛃𝟏𝟎 + 𝛃𝟏𝟏′𝐙𝐭−𝟏 and 𝐙𝐭−𝟏 is a vector of information variables available 

at the time of investing. This paper considers a conditional version of the four linear factor 
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models presented earlier, leading to models denoted as CCAPM, CFF, CCARHART and 

CFS.   

3.2.3.3 Consumption-based models 

The SDF of consumption-based models is a function of the marginal utility of the 

representative agent. Although these fundamental models have been widely used in the 

equity premium puzzle literature, they are uncommon in the performance evaluation 

literature, perhaps because consumption data are problematic. We consider two 

consumption-based models. The first model assumes that the representative agent has time-

separable power utility (POWER). The second model assumes an external habit-formation 

preference specification (HABIT) similar to the one proposed by Abel (1990) and Cochrane 

and Hansen (1992). The real SDFs implied by the two models are adjusted for inflation to 

obtain the following nominal versions: 

(18) 𝑚𝑃𝑂𝑊𝐸𝑅𝑡 (𝛉) = 𝛽 (
𝐶𝑡

𝐶𝑡−1
)

−𝛾 𝑃𝐿𝑡−1

𝑃𝐿𝑡
, 

(19) 𝑚𝐻𝐴𝐵𝐼𝑇𝑡(𝛉) = 𝛽 (
𝐶𝑡 − 𝜇𝐶𝑡−1

𝐶𝑡−1 − 𝜇𝐶𝑡−2
)

−𝛾 𝑃𝐿𝑡−1

𝑃𝐿𝑡
. 

where 𝐶𝑡 is the consumption of the representative agent and 𝑃𝐿𝑡 is the price level at time 𝑡. 

The parameters are the subjective time discount factor 𝛽, the curvature parameter 𝛾 (which 

represents the relative risk aversion in the POWER model) and the habit parameter 𝜇 < 1, 

which accounts for the fraction of previous consumption that the agent has become used to.  

3.2.3.4 Manipulation-Proof Performance Measure 

The manipulation-proof performance measure (MPPM), developed by Goetzmann, 

Ingersoll, Spiegel and Welch (2007), overcomes the problem that managers can manipulate 

existing performance measures. It is similar to a SDF alpha for a power utility function of 

the market portfolio return, with a relative risk aversion set so that holding the market 
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portfolio is optimal. The specific measure proposed by the authors provides an annualized 

continuously compounded excess return certainty equivalent for a mutual fund that can be 

calculated as follows: 

(20) 𝑀𝑃𝑃𝑀 =
1

(1 − 𝛾)∆𝑡
ln (

1

𝑇
∑ [

𝑅𝑀𝐹𝑡

𝑅𝐹𝑡
]

1−𝛾𝑇

𝑡=1

), 

where 𝑇 is the total number of observations, 𝛾 is the risk aversion, and ∆𝑡 is the length of 

time in years between observations. Because the SDF alphas from other models are 

monthly effective excess return certainty equivalent, we transform MPPM to a value in 

comparable unit by using the following equivalence: 

(21) 𝛼𝑀𝑃𝑃𝑀,𝑀𝐹(𝛾) = 𝑒𝑀𝑃𝑃𝑀×∆𝑡 − 1. 

3.2.3.5 Nonparametric Model 

All previously described parametric measures are likely to suffer from the benchmark 

choice problem, since they do not correctly price passive portfolio returns, according to 

numerous asset pricing tests in the literature. Furthermore, their evaluation may change 

across models and other methodological choices (Lehmann and Modest, 1987, Grinblatt 

and Titman, 1994, Fama, 1998, and Ahn, Cao and Chrétien, 2009). To alleviate these 

problems, Chen and Knez (1996) develop the LOP performance measure, a nonparametric 

measure that prices passive portfolio returns by construction. Specifically, its SDF has the 

minimum volatility among SDFs that satisfy the law-of-one-price condition and 

corresponds to a linear function of the passive portfolio returns: 

(22) 𝑚𝐿𝑂𝑃𝑡 = 𝐚′𝐑𝐊𝐭. 

The LOP SDF also represents the first part of the BC SDF introduced previously. 

Comparing both models can thus lead to a better understanding of the sources of 

disagreement that are associated with the second part of the BC SDF.  
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3.3 Methodology  

In this section, we present the methodology for estimating and comparing the best clientele 

and candidate alphas.  

3.3.1 Joint Estimation of the Performance Models 

The main benefit of the methodology is that we perform a joint estimation of the alphas 

from the performance measures, leading to proper statistical inferences for the null and 

alternative hypotheses of section 3.2.1. The estimation is done by mapping the problems 

into moments and using the generalized method of the moments (GMM) of Hansen (1982) 

for estimation and testing. For a sample of 𝑇 observations, we rely on the following basic 

set of moments:  

(23) 
1

𝑇
∑[(𝐚′𝐑𝐊𝐭)𝐑𝐊𝐭] − 𝟏 = 0

𝑇

𝑡=1

, 

(24) 
1

𝑇
∑[(𝑅𝑀𝐹𝑡 − 𝐜′𝐑𝐊𝐭)𝐑𝐊𝐭] = 0

𝑇

𝑡=1

, 

(25) 
1

𝑇
∑[𝑚̅𝐵𝐶𝑡]2 −

(1 + ℎ
2

)

𝑅𝐹
2

𝑇

𝑡=1

= 0, 

(26) 
1

𝑇
∑[𝑚̅𝐵𝐶𝑡𝑅𝑀𝐹𝑡]

𝑇

𝑡=1

− 1 − 𝛼̅𝐵𝐶,𝑀𝐹 = 0, 

(27) 
1

𝑇
∑[𝑚𝜑𝑡(𝛉)𝑅𝑀𝐹𝑡]

𝑇

𝑡=1

− 1 − 𝛼𝜑,𝑀𝐹(𝛉) = 0, 
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(28) 
1

𝑇
∑[𝑚𝜑𝑡(𝛉)𝑅𝐹𝑡]

𝑇

𝑡=1

− 1 = 0. 

 Equations (23) to (26) represent the moments required to estimate the BC alpha. In 

total, it requires the estimation of 2𝐾 + 2 parameters, where 𝐾 is the number of passive 

portfolios. The 𝐾 moments in equation (23) allow for the estimation of the LOP SDF, 

𝑚𝐿𝑂𝑃𝑡 = 𝐚′𝐑𝐊𝐭. It ensures that it correctly prices (on average) the 𝐾 passive portfolio 

returns. The 𝐾 moments in equation (24) represent orthogonality conditions between the 

replication error term, 𝑤𝑡 = 𝑅𝑀𝐹𝑡 − 𝐜′𝐑𝐊𝐭, and passive portfolio returns. These conditions 

are needed to estimate the coefficients 𝐜 in the best replicating payoff 𝐜′𝐑𝐊𝐭. The moment 

in equation (25) imposes the no-good-deal condition to estimate the parameter 𝑣, which is 

restricted to be positive to obtain an upper bound on performance. In this moment, 𝑚̅𝐵𝐶𝑡 =

𝑚𝐿𝑂𝑃𝑡 + 𝑣𝑤𝑡 = 𝐚′𝐑𝐊𝐭 + 𝑣(𝑅𝑀𝐹𝑡 − 𝐜′𝐑𝐊𝐭) and ℎ̅ is an exogenously specified maximum 

Sharpe ratio. 𝑅𝐹 represents a risk-free rate equivalent and is set to one plus the average one-

month Treasury bill return in our sample, which is 0.3393%.3 Finally, using the estimated 

BC performance SDF, 𝑚𝐵𝐶𝑡, we obtain the BC alpha using the moment specified by 

equation (26). 

 The other two equations are useful for estimating the candidate alphas. Equation 

(27) is the moment for the estimation of 𝛼𝜑,𝑀𝐹(𝛉), the alpha associated with candidate SDF 

𝑚𝜑𝑡(𝛉). Equation (28) is a moment imposed for all candidate parametric SDFs to force 

them to correctly price the risk free return. Dahlquist and Söderlind (1999) show the 

importance of fixing the mean of SDFs to an economically sound value in estimating SDF 

alphas. When necessary, this basic set of moments is augmented by the additional moments 

needed to estimate the parameters of candidate parametric SDFs.  

For linear factor models, we add following moments: 

                                                 
3 For consistency, we also include the one-month Treasury bill return as one of the K passive portfolio returns, 

so that the estimated mean SDF is similar to 1 𝑅𝐹
⁄ . 
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(29) 
1

𝑇
∑[𝑚𝜑𝑡(𝛉)𝐟𝐭] − 𝐏𝐟 = 0.

𝑇

𝑡=1

 

These 𝐹 moments allow for the estimation of the candidate linear factor SDF, 

𝑚𝜑𝑡(𝛉) = 𝜔0 + 𝛚𝟏
′ 𝐟𝐭, by ensuring that it correctly prices the 𝐹 factors. 𝐏𝐟 is a 𝐹 × 1 vector 

of factor prices, with 𝑃𝑓 = 1 when the factor is a gross return and 𝑃𝑓 = 0 when the factor is 

an excess return. Taken together, equations (28) and (29) lead to the estimation of any 

candidate linear factor with a just identified system. For example, the two parameters of the 

CAPM, 𝛉 = {𝑎0, 𝑎𝑀𝐾𝑇}, are estimated by correctly pricing the risk-free return and the 

market portfolio return. This strategy yields SDF alpha estimates for linear factor models 

that are closely related to Jensen-type alphas from regressions with the same factors. 

Similarly, for conditional linear factor models, we augment the basic set of moments with 

the following moments to account for the information variables 𝐙𝐭−𝟏:  

(30) 
1

𝑇
∑[𝑚𝐶𝜑𝑡(𝛉)𝐟𝐭] − 𝐏𝐟 = 0,

𝑇

𝑡=1

 

(31) (
1

𝑇
∑[𝑚𝐶𝜑𝑡(𝛉)𝐟𝐭] − 𝐏𝐟

𝑇

𝑡=1

) ⊗ 𝐙𝐭−𝟏 = 0. 

For consumption-based models, instead of estimating the curvature parameter 𝛾 and 

the habit level parameter 𝜇, we specify them directly by choosing relevant parameter values 

from the literature. Specifically, we follow Chrétien (2012, Table 3.6) and use 𝛾 = {2, 4, 6} 

and 𝜇 = {0.8, 0.9}. To again ensure an economically relevant mean SDF, we estimate the 

time discount factor 𝛽 with equation (28) so that the resulting SDF correctly prices the risk 

free return.  

For the manipulation-proof performance measure, we follow Goetzmann, Ingersoll, 

Spiegel and Welch (2007) and estimate alphas for risk aversion 𝛾 = {2, 3, 4}. As described 
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in section 3.2.3.4, the MPPM alpha does not come from a SDF model, so the moments in 

equations (27) and (28) are not necessary. Instead, we estimate it by exploiting the 

variability inherent in the time series average within the MPPM using the following 

moment:  

(32) 
1

𝑇
∑ [

𝑅𝑀𝐹𝑡

𝑅𝐹𝑡
]

1−𝛾𝑇

𝑡=1

− [1 + 𝛼𝑀𝑃𝑃𝑀,𝑀𝐹(𝛾)]
1−𝛾

= 0. 

To our knowledge, this paper is the first to propose an estimation strategy for 

MPPM alpha that allows for statistical inferences on the significance of the performance 

values.  

Finally, for the nonparametric LOP performance measure, we use the SDF 𝑚𝐿𝑂𝑃𝑡 =

𝐚′𝐑𝐊𝐭 estimated from the 𝐾 moments in equation (23) to obtain the corresponding LOP 

alpha 𝛼𝐿𝑂𝑃,𝑀𝐹. Hence, we do not need the moment in equation (28) in the system.  

In all estimation cases, the systems are just identified because the number of 

parameters equals the number of moments. Hence, parameter estimates are not influenced 

by the choice of the weighting matrix in GMM. Although our procedure estimates alpha 

separately for each fund, Farnsworth, Ferson, Jackson and Todd (2002) demonstrate that 

estimating this system for one fund at a time produces the same point estimates and 

standard errors for alpha as a system that includes an arbitrary number of funds. The 

statistical significance of the parameters is assessed with the asymptotic properties of 

GMM derived by Hansen (1982).4 The standard errors are adjusted for conditional 

heteroskedasticity and serial correlation using the method of Newey and West (1987) with 

two lags.5  

                                                 
4 Chrétien and Kammoun (2015) investigate the finite sample properties of BC alpha estimates and find that 

inferences are generally robust to finite sample issues.  
5 Two lags account for the small but significant serial correlation in returns of some equity mutual funds (that 

might be invested in thinly traded stocks). Chrétien and Kammoun (2015) show that 𝑡-statistics for BC SDF 

alphas are similar when using no lag or four lags.  
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3.3.2 Passive Portfolios and Maximum Sharpe Ratio Choice 

To implement the best clientele performance measure, two choices are particularly 

important: the passive portfolio returns 𝐑𝐊𝐭 and the maximum Sharpe ratio ℎ̅. Chrétien and 

Kammoun (2015) analyze extensively the impact of these choices in the context of equity 

mutual fund performance evaluation. For the first choice, using sets of passive portfolio 

returns based on either ten industry portfolios, six style portfolios or the market portfolio, 

they find that BC alphas are relatively similar across the three sets. Although their main 

results rely on the ten industry portfolio set, they show that their conclusions are not 

sensitive to this choice. Based on this assessment, this paper selects the risk free rate and 

the returns on ten industry portfolios as passive portfolio returns. Details on these passive 

portfolios will be provided in the data section.  

For the second choice, Chrétien and Kammoun (2015) present the literature on 

selecting an exogenous maximum Sharpe ratio, including Ross (1976), MacKinlay (1995) 

and Cochrane and Saá-Requejo (2000). They conclude that the ratio is somewhat 

subjectively specified, but that guidance from the literature leads to a selection that implies 

adding the market Sharpe ratio, ℎ𝑀𝐾𝑇, to the optimal Sharpe ratio attainable from the 

passive portfolios, ℎ∗, or ℎ̅ = ℎ∗ + ℎ𝑀𝐾𝑇. More conservatively, they also consider a 

maximum Sharpe ratio of ℎ̅ = ℎ∗ + 0.5ℎ𝑀𝐾𝑇, which adds half of the market Sharpe ratio, 

as well as six other sensible choices. Based on the literature and their empirical analysis, 

they find that a value of ℎ̅ = ℎ∗ + 0.5ℎ𝑀𝐾𝑇 appears the most relevant choice. In this 

paper, we follow this recommendation.  

To implement it, we use ℎ𝑀𝐾𝑇 = 0.1262, a value equal to the monthly market 

Sharpe ratio in our sample. The ten industry passive portfolio set yields a full-sample 

monthly optimal Sharpe ratio of ℎ∗ = 0.258, which gives a maximum Sharpe ratio of ℎ̅ = 

0.321 for funds with a full sample of observations. Adjusting ℎ∗ for the bias investigated by 

Ferson and Siegel (2003),6 we obtain an adjusted ℎ∗ of 0.177 and an adjusted ℎ̅ of 0.240. 

                                                 
6 Ferson and Siegel (2003) show that the sample optimal Sharpe ratio is biased upward when the number of 

basis assets (K) is large relative to number of observations (T). They propose a bias correction to obtain an 
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This value is similar to the maximum Sharpe ratios advocated by Ross (1976), MacKinlay 

(1995) and Cochrane and Saá-Requejo (2000), who respectively propose a monthly Sharpe 

ratio of 0.25, a squared annual Sharpe ratio of 0.6 (approximately equivalent to a monthly 

Sharpe ratio of 0.224) and an annual Sharpe ratio of 1 (approximately equivalent to a 

monthly value of 0.289).  

3.3.3 Hypothesis Testing on Alphas 

We provide numerous cross-sectional statistics to summarize the empirical results. First, we 

study the distribution of alpha estimates for each model. Specifically, we present the mean, 

standard deviation and selected percentiles of the distributions of estimated alphas and their 

corresponding 𝑡-statistics, computed as 𝑡𝑖,𝑛 = 𝛼̂𝑖,𝑛 𝜎̂𝛼̂𝑖,𝑛
⁄ , where 𝛼̂𝑖,𝑛 is the estimated alpha 

for fund 𝑛 and 𝜎̂𝛼̂𝑖,𝑛
 is its Newey-West standard error, for any performance measure 𝑖 =

{𝐵𝐶, 𝜑}. We also present the following 𝑡-statistics to test for the hypothesis that the cross-

sectional mean of estimated alphas is equal to zero:  

(33) 𝑡𝑖 =
𝐸̂(𝛼̂𝑖)

𝜎̂𝐸̂(𝛼̂𝑖)

 , 

with: 

(34) 𝐸̂(𝛼̂𝑖) =
1

𝑁
∑ 𝛼̂𝑖,𝑛

𝑁

𝑛=1

, 

(35) 𝜎̂𝐸̂(𝛼̂𝑖) =
𝜎̂(𝛼̂𝑖,𝑛)

√𝑁
√1 + (𝑁 − 1)𝜌𝛼̂𝑖,𝑛,𝛼̂𝑖,𝑚

, 

                                                                                                                                                     

adjusted optimal Sharpe ratio given by: 𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 ℎ∗ = √
(ℎ∗)2 (𝑇−𝐾−2)

𝑇
−

𝐾

𝑇
. For our full sample, with the set 

of  passive portfolios based on ten industry portfolios, T = 336 and K = 11.  
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where: 

(36) 𝜎̂(𝛼̂𝑖) = √
1

𝑁
∑(𝛼̂𝑖,𝑛

2 − 𝐸̂(𝛼̂𝑖)2)

𝑁

𝑛=1

, 

and 𝑁 is the number of funds. This test assumes that the cross-sectional distribution of the 

𝑁 alphas obtained from any performance measure 𝑖 = {𝐵𝐶, 𝜑} is multivariate normal with 

a mean of zero, a standard deviation 𝜎̂(𝛼̂𝑖) equal to the observed cross-sectional standard 

deviation of the alpha estimates, and a constant correlation between any two alpha 

estimates of 𝜌𝛼̂𝑖,𝑛,𝛼̂𝑖,𝑚
, which we set at 0.044. This value is taken from Barras, Scaillet and 

Wermers (2010, p. 193) and Ferson and Chen (2015, Appendix, p. 62), who discuss the 

cross-sectional dependence in performance among funds, adjusted for data overlap, in their 

fund samples (which are comparable to ours).  

 Second, we study the disagreement between the BC alphas and the candidate alphas. 

We report the difference in means of estimated alphas, 𝐸̂(𝛼̂̅𝐵𝐶) − 𝐸̂(𝛼̂𝜑), the difference in 

standard deviations of estimated alphas, 𝜎̂(𝛼̂̅𝐵𝐶) − 𝜎̂(𝛼̂𝜑), as well as the correlation 

between estimated alphas, 𝜌𝛼̂̅𝐵𝐶,𝛼̂𝜑
, for each candidate model 𝜑. We also present the 

following 𝑡-statistics to test for the hypotheses that these differences are respectively equal 

to zero:   

(37) 
𝑡𝐸̂(𝛼̂̅𝐵𝐶)−𝐸̂(𝛼̂𝜑) =

𝐸̂(𝛼̂̅𝐵𝐶) − 𝐸̂(𝛼̂𝜑)

√𝜎̂𝐸̂(𝛼̂̅𝐵𝐶)
2 + 𝜎̂𝐸̂(𝛼̂𝜑)

2 − 2𝜌𝛼̂̅𝐵𝐶,𝛼̂𝜑
𝜎̂𝐸̂(𝛼̂̅𝐵𝐶)𝜎̂𝐸̂(𝛼̂𝜑)

, 
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(38) 𝑡𝜎̂2(𝛼̂̅𝐵𝐶)−𝜎̂2(𝛼̂𝜑) =
(𝜎̂2(𝛼̂̅𝐵𝐶) − 𝜎̂2(𝛼̂𝜑)) √𝑁

√4𝜎̂2(𝛼̂̅𝐵𝐶)𝜎̂2(𝛼̂𝜑) (1 − 𝜌𝛼̂̅𝐵𝐶,𝛼̂𝜑

2 )

 . 

Details and literature on these tests can be found in Sheskin (1997, Test 12). We 

finally provide the proportions of the estimated candidate alphas that are smaller, 

significantly smaller, larger and significantly larger than the associated BC alphas. As 

discussed previously, the system of moments jointly estimate the BC and candidate alphas. 

This joint estimation leads to a direct test on the equality of alphas that properly accounts 

for the correlation between estimates.  

3.4 Data and Summary Statistics 

3.4.1 Mutual Fund Returns 

The sample of funds includes actively-managed open-ended U.S. equity mutual funds from 

January 1984 to December 2012. The source is the CRSP Survivor-Bias-Free US Mutual 

Fund Database. We focus on U.S. equity funds by excluding bond and money market 

funds, balanced funds, international funds and funds not strongly invested in equity 

securities.7 We exclude index funds and keep the funds only if they hold between 80% and 

105% in common stocks.8 Finally, we use the database variable "open to investors" to 

consider only open-ended mutual funds. 

 To mitigate survivorship bias and selection bias, we choose 1984 as the starting 

year, as suggested by Elton, Gruber and Blake (2001) and Fama and French (2010). To 

address back-fill and incubation biases, we follow Elton, Gruber and Blake (2001) and 

Kacperczyk, Sialm and Zheng (2008) and Evans (2010). We consider only observations 

                                                 
7 Following Kacperczyk, Sialm and Zheng (2008), we identify open-ended U.S. equity mutual funds by policy 

code CS, Strategic Insight objective codes AGC, GMC, GRI, GRO, ING or SCG, Weisenberger objective 

codes G, G-I, AGG, GCI, GRO, LTG, MCG or SCG, and Lipper objective codes EIEI, EMN, LCCE, LCGE, 

LCVE, MATC, MATD, MATH, MCCE, MCGE, MCVE, MLCE, MLGE, MLVE, SCCE, SCGE or SCVE.  
8 We identify index funds by finding the word "index" in their name and by Lipper objective codes SP and 

SPSP. 
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after the organization date and we require that funds have total net assets (TNA) superior to 

$15 million in the first year of entering the database. We also eliminate funds without a 

name and funds that omit to report their organization date. Finally, as Barras, Scaillet and 

Wermers (2010), we exclude funds that have fewer than 60 observations for estimation 

purposes.9 Considering these sampling criteria, we obtain a final sample of 2786 actively-

managed open-ended U.S. equity mutual funds. 

3.4.2 Other Variables 

As passive portfolios, we use the risk-free rate plus ten industry portfolios taken from 

Kenneth R. French’s website. Industry classifications are consumer nondurables (NoDur), 

consumer durables (Durbl), manufacturing (Manuf), energy (Enrgy), high technology 

(HiTec), telecommunication (Telcm), shops (Shops), healthcare (Hlth), utilities (Utils) and 

other sectors (Others). The CRSP value-weighted index of NYSE/AMEX/NASDAQ stocks 

(MKT) and the risk-free rate (RF) are taken from the CRSP database.  

For the Fama-French and Carhart linear factor models, we take monthly returns on 

SMB, HML and MOM from Kenneth R. French’s website. For the Ferson-Schadt model, 

we use returns on the S&P 500 index for large stocks (LS), on ninth and tenth NYSE 

market value deciles for small stocks (SS), on (approximatively 20-year) U.S. Treasury 

bonds for long-term government bonds (LTGB), on the Merrill Lynch High Yield 

Composite Index for low-grade corporate bonds (LGCB), and on one-month U.S. Treasury 

bills for the risk free asset (RF). The data are from CRSP except for LGCB, which comes 

from the Federal Reserve Economic Database (FRED).  

For the conditional linear factor models, we consider the lagged values of four 

public information variables commonly used in the literature and first introduced by Keim 

and Stambaugh (1986), Campbell (1987), Campbell and Shiller (1988) and Fama and 

French (1988, 1989). We use the dividend yield of the S&P 500 Index (DIV) from 

                                                 
9 The 60-month screen ensures that we have enough observations to obtain reliable GMM estimates. The 

small survivorship bias it introduces should have little effect on the comparison between BC and candidate 

alphas. Furthermore, Barras, Scaillet and Wermers (2010) and Chrétien and Kammoun (2015) find that their 

performance findings are similar when using a 36-month screen instead of a 60-month screen.  
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Datastream, computed as the difference between the log of the twelve-month moving sum 

of dividends paid on the S&P 500 and the log of its lagged value; the yield on three-month 

U.S. Treasury bills (YLD) from FRED; the term spread (TERM), which is the difference 

between the long-term yield on U.S Treasury bonds (from Datastream) and the yield on 

three-month U.S. Treasury bills; and the default spread (DEF), which is the difference 

between BAA- and AAA-rated corporate bond yields from FRED. 

For the consumption-based models, we proxy for aggregate per capita consumption 

using the seasonally-adjusted personal consumption expenditures on non-durables and 

services, adjusted by their respective consumption deflator, and divided by the resident 

population. For the price level, we take the non-seasonally-adjusted consumer price index. 

The data are from FRED. 

3.4.3 Summary Statistics 

Table 3.1 shows monthly summary statistics for the mutual fund returns (panel A), and for 

the factors, information variables and passive portfolio returns (panel B). In panel A, the 

mean mutual fund return is 0.734% with a standard deviation of 0.301%. The Sharpe ratios 

average 0.086 across funds, with values from -0.464 to 0.379. In panel B, the return factors 

have means from 0.068% (for SMB) to 1.028% (for SS), with standard deviations from 

2.584% (LGCB) to 6.542% (for SS). Their Sharpe ratios vary from 0.022 (for SMB) to 

0.322 (for LGCB). Consumption growth (CG) has a mean of 0.137% and a standard 

deviation of 0.285%. The information variables have means of 2.465% (for DIV), 4.126% 

(for YLD), 1.942% (for TERM) and 1.026% (for DEF). The industry portfolios have mean 

returns from 0.831% (for consumer durables) to 1.171% (for consumer nondurables), with 

standard deviations from 3.995% (for Utils) to 7.226% (for HiTec).  

3.5 Empirical Results 

This section presents the empirical results. We first examine the standard deviation of 

estimated SDFs in our sample. Then, we provide results for best clientele (BC) alphas and 

their closely related LOP alphas to establish the importance of investor disagreement within 
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the BC measure. Finally, we document the performance and disagreement associated with 

the various candidate parametric models under consideration.  

3.5.1 Stochastic Discount Factors for Performance Evaluation 

Our disagreement results are based on a comparison of performance evaluation obtained 

from BC SDFs with the one obtained from parametric SDFs. As discussed previously, all 

SDFs have similar means because they are required to correctly price the risk free return. A 

useful way to understand their differences is then to examine their volatility using the 

diagnostic tool developed by Hansen and Jagannathan (1991). Figure 3.1 provides a 

comparison of SDF standard deviations for unconditional linear factor models (figure 3.1a), 

conditional linear factor models (figure 3.1b), power utility models (figure 3.1c) and habit-

formation preference models (figure 3.1d). The figure does not illustrate the MPPM 

because its alpha does not come from a SDF model.  

In each figure, two lines indicate lower and upper volatility bounds for SDFs that 

are admissible under the law-of-one-price and no-good-deal conditions. The lower bound is 

the volatility restriction of Hansen and Jagannathan (1991), who show that admissible 

SDFs need a minimum volatility to correctly price passive portfolios. This minimum 

volatility SDF is also behind the LOP performance measure of Chen and Knez (1996), so 

the continuous line is given by 𝜎(𝑚𝐿𝑂𝑃𝑡) = ℎ∗ 𝑅𝐹⁄ . The upper bound is the maximum 

volatility restriction implied by the no-good-deal bounds of Cochrane and Saá-Requejo 

(2000), who demonstrate that ruling out good deals is equivalent to assuming a maximum 

SDF volatility. In our setup, the maximum volatility SDF is behind the BC performance 

measure, so the dashed line is equal to 𝜎(𝑚̅𝐵𝐶𝑡) = ℎ̅ 𝑅𝐹⁄ .  

All candidate SDFs with volatility outside the two lines are not admissible under the 

law-of-one-price and no-good-deal conditions, and thus could generate problematic alphas. 

Figure 3.1 reveals that candidate SDFs vary greatly with respect to their volatility. In figure 

3.1a, the CAPM and FF SDFs do not have sufficient variability to be admissible, but the 

CARHART and FS SDFs are within the bounds. In figure 3.1b, the conditional versions of 

these SDFs have standard deviations that are too high, except for the CCAPM SDF. In 

figure 3.1c, as first illustrated by Hansen and Jagannathan (1991), POWER SDFs do not 
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have sufficient variability for reasonable values of the risk aversion parameter. Figure 3.1d 

shows that HABIT SDFs have higher volatility, almost reaching the lower bound when 𝛾 =

6 and 𝜇 = 0.9, a finding in line with Cochrane and Hansen (1992). Overall, our candidate 

models provide a diversity of SDF volatilities, with values that are too low, well specified 

or too high, depending on the model. The next subsections examine whether this diversity 

leads to notable differences in their performance evaluation.  

3.5.2 Best Clientele and LOP Alphas 

Before turning to the results for different classes of parametric models, we start by 

presenting the alphas for the BC performance measure, which serve as a basis for 

comparison, and the alphas for the nonparametric LOP performance measure. Section 3.2.2 

shows that the LOP SDF represents the first part of the BC SDF. Comparing both models is 

useful to better understand the sources of disagreement that are associated with the second 

part of the BC SDF, and hence establishes the importance of investor disagreement within 

the BC measure. As described in section 3.3.2, the measures use the returns on ten industry 

portfolios and the risk-free asset as passive portfolios. Also, the BC measure allows for a 

maximum Sharpe ratio of ℎ∗ + 0.5ℎ𝑀𝐾𝑇, where ℎ∗ is the monthly optimal Sharpe ratio of 

the passive portfolios during the estimation period of a mutual fund, and ℎ𝑀𝐾𝑇 = 0.1262 

is the monthly Sharpe ratio of the CRSP value-weighted index of NYSE/AMEX/NASDAQ 

stocks.  

Table 3.2 presents the results by reporting the cross-sectional statistics and tests 

introduced in section 3.3.3. Specifically, this table as well as tables 3 to 7 include the 

following contents. Panel A provides the mean, standard deviation (Std Dev) and selected 

percentiles of the distributions of estimated monthly alphas (columns under Performance) 

and their corresponding 𝑡-statistics (columns under 𝑡-statistics). It also reports the 𝑡-

statistics (𝑡-stat) on the significance of the mean of the estimated alphas. Panel B looks at 

the disagreement between BC alphas and candidate alphas (which are LOP alphas in table 

3.2). On the left side of the panel, it reports differences in mean alphas (Mean Diff) and 

standard deviations of alphas (SD Diff), along with their 𝑡-statistics (𝑡-stat), and 

correlations between alphas (Corr). On the right side of the panel, it reports proportions of 
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candidate alphas that are smaller (% 𝛼𝜑 < 𝛼̅𝐵𝐶), significantly smaller (% 𝛼𝜑𝑠𝑖𝑔 < 𝛼̅𝐵𝐶), 

larger (% 𝛼𝜑 > 𝛼̅𝐵𝐶), and significantly larger (% 𝛼𝜑𝑠𝑖𝑔 > 𝛼̅𝐵𝐶) than the BC alphas. All 

statistics are in percentage except the 𝑡-statistics. 

Panel A of table 3.2 shows that the cross-sectional distribution of the estimated BC 

alphas has a mean of 0.236% (𝑡-stat = 3.35) and standard deviation of 0.334%. The 

distribution of the BC 𝑡-statistics indicates that more than 75% of funds have positive 

alphas and approximately 25% of funds have significantly positive alphas. These findings 

are consistent with mutual funds providing added value to their best potential clienteles, as 

documented by Chrétien and Kammoun (2015). By comparison, the LOP alphas have a 

mean of -0.179% (𝑡-stat = -3.14) and a standard deviation of 0.271%. More than 75% of 

funds have negative performance, significantly so for approximately 30% of funds. By 

eliminating the part of the BC SDF that accounts for the disagreement from the most 

favorable investors, the LOP SDF leads to a negative evaluation similar to the one 

commonly found in the mutual fund performance literature.  

Panel B of table 3.2 confirms that the disagreement between both models is 

significant. The BC alphas are always greater than their corresponding LOP alphas by 

construction. However, their mean difference in alphas of 0.415% (𝑡-stat =8.18) is 

economically large. Furthermore, this value is comparable to the magnitude of investor 

disagreement documented by Ferson and Lin (2014, Table III), who obtain bounds from 

0.21% to 0.38% for the expected disagreement with traditional alphas for various 

benchmark returns. Even though the LOP SDF correctly prices passive portfolios and hence 

does not suffer from the benchmark choice problem, it suffers from the misrepresentation 

problem because it gives a severe or pessimistic fund evaluation compared with the one 

from the most favorable clienteles. The difference in standard deviations of alphas between 

the measures is also large (at 0.064%, 𝑡-stat =15.78), indicating that the BC SDF leads to a 

greater cross-sectional variability in alpha estimates. This finding is consistent with the BC 

measure allowing for higher disagreement on funds with returns difficult to span, leading to 

a non-constant disagreement across funds. The correlation of 0.70 between the BC and 

LOP alphas also indicates that both measures provide relatively different performance 

values due to the disagreement part of the BC SDF.  
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3.5.3 Alphas and Disagreement for the Unconditional Linear Factor Models 

Table 3.3 presents the results for unconditional linear factor models, the most commonly 

used models in performance evaluation. In panel A, the alphas have means of -0.068% for 

the CAPM, -0.087% for the FF model, -0.120% for the CARHART model and -0.098% for 

the FS model. The standard deviations vary from 0.245% to 0.275%. Although a majority 

of funds have negative alphas, the mean alphas are only significantly different from zero 

for the FS model (at the 10% level, 𝑡-stat = -1.77) and the CARHART model (at the 1% 

level, 𝑡-stat = -2.32). The performance evaluation for the representative investors behind 

these models is not as negative as the one from the LOP measure presented previously.  

As panel B shows, these representative investors nevertheless disagree significantly 

with the best clienteles. The mean differences in alphas are equal to 0.304% (𝑡-stat = 5.50) 

for the CAPM, 0.323% (𝑡-stat = 5.71) for the FF model, 0.356% (𝑡-stat = 5.31) for the 

CARHART model, and 0.334% (𝑡-stat = 6.17) for the FS model. These disagreement 

values are statistically and economically significant and once again comparable to the 

results of Ferson and Lin (2014). Similar to the LOP measure, linear factor models also 

significantly reduce the dispersion of fund alphas compared with the BC measure. They 

produce alphas that have smaller cross-sectional standard deviations and lower correlations 

with the BC alphas than the LOP alphas, particularly for the CARHART model. On a fund-

by-fund basis, they generate alphas that are smaller than the BC alphas for more than 90% 

of funds and significantly smaller for approximately 50% of them. Although the SDF 

volatility bounds in figure 3.1a differentiate the CAPM and FF SDFs (not admissible) from 

the CARHART and FS SDFs (admissible), the alphas for all four models show little 

differences. They are almost always below the BC alpha admissibility bounds and 

oftentimes suffer from the misrepresentation problem.  

3.5.4 Alphas and Disagreement for the Conditional Linear Factor Models 

Table 3.4 presents results for conditional linear factor models, which have been used 

extensively in performance evaluation since their introduction by Ferson and Schadt 

(1996). The findings are qualitatively similar to the ones for their unconditional 

counterparts. Their average alphas are negative, significantly so at the 5% level only for the 
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CCARHART model (𝑡-stat = -2.60). Their mean differences in alphas vary from 0.288 (for 

CFS, 𝑡-stat = 5.42) to 0.374 (for CCARHART, 𝑡-stat = 5.28), indicating a large and 

statistically significant disagreement. They also generate a significant decrease in the cross-

sectional dispersion of fund alphas compared with the BC measure. Although the volatility 

bounds in figure 3.1b show that conditional models have SDF standard deviations that are 

too high, the alphas for all four models are almost always below the BC alpha bounds, and 

significantly so for approximately 50% of funds. Hence, such as their unconditional 

versions, these models suffer from the misrepresentation problem because they give alphas 

that likely undervalue the funds for their most favorable clienteles.  

Overall, the results for unconditional and conditional linear factor models show that 

there is an economically and statistically significant disagreement between the performance 

evaluation for representative investors and the one for best clienteles. This disagreement 

leads the models to a somewhat severe fund evaluation compared with the one for the most 

favorable clienteles.  

3.5.5 Alphas and Disagreement for the Consumption-Based Models 

Tables 3.5 and 3.6 present the results for consumption-based models. The performance 

results across various specifications of the curvature parameter 𝛾 and habit level parameter 

𝜇 are remarkably similar, with almost the same correlation (estimates ≈ 0.63) between their 

alphas and the BC alphas. In panel A of table 3.5, the cross-sectional distributions of alphas 

for POWER models have means and standard deviations of 0.429% (𝑡-stat = 6.89) and 

0.230% when 𝛾 = 2, 0.423% (𝑡-stat = 6.80) and 0.296% when 𝛾 = 4, and 0.417% (𝑡-stat = 

6.69) and 0.296% when 𝛾 = 6.  Based on the power utility models, more than 90% of funds 

have positive alphas and approximately 25% of funds have significantly positive alphas. In 

panel A of table 3.6, the results are more positive for the habit-formation preference 

models. For example, the mean alphas range from 0.448% (𝑡-stat = 7.25), when 𝛾 = 2 and 

𝜇 = 0.8, to 0.542% (𝑡-stat = 8.02), when 𝛾 = 6 and 𝜇 = 0.9.  

Panel B of tables 3.5 and 3.6 confirms that the consumption-based alphas are 

generally not admissible because their mean values are significantly higher than the upper 

bounds given by the BC alphas. The mean differences in alphas are less than -0.180% for 
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all specifications. Also, on a fund-by-fund basis, the consumption-based alphas are larger 

than the BC alphas for more than 80% of funds. In addition to having SDF volatilities that 

are too low, as illustrated by figures 1c and 1d, the consumption-based models rely on a 

proxy of per capita consumption growth that has a low correlation with equity returns, as 

discussed in the equity premium puzzle literature. The joint effects of low volatility and 

low correlation lead consumption-based SDFs to insufficiently discount the mutual fund 

gross returns, resulting in alphas that are too high to be admissible.  

3.5.6 Alphas and Disagreement for the Manipulation Proof Performance Measure 

Table 3.7 gives the results for the MPPM with risk aversion parameter 𝛾 = {2, 3, 4}, 

following Goetzmann, Ingersoll, Spiegel and Welch (2007). For this measure, it is useful to 

describe the performance results in more details because this paper is the first to estimate 

monthly effective MPPM SDF alphas, their standard errors and their 𝑡-statistics for a large 

sample of equity mutual funds. To our knowledge, the MPPM literature has focused mostly 

on hedge funds and has not provided an estimation strategy that allows for statistical 

inferences on the significance of the performance values. The only published exception for 

mutual funds is Ferson and Lin (2014), who presents MPPM alphas with 𝛾 = 2.649, but do 

not provide standard errors or 𝑡-statistics.10  

Panel A provides three interesting findings. First, the MPPM alphas are relatively 

sensitive to the choice of 𝛾. They have means of 0.120% (𝑡-stat = 1.40) when 𝛾 = 2, -

0.050% (𝑡-stat = -0.36) with 𝛾 = 3, and -0.228% (𝑡-stat = -1.05) when 𝛾 = 4. These results 

can be interpreted in light of the role of 𝛾 in the MPPM. Intuitively, MPPM representative 

investors have increasing risk aversion and “aversion to manipulation” as 𝛾 increases. Our 

results show that when they have low concerns about risk and manipulation (i.e., 𝛾 = 2), 

their alphas are closer to the BC alphas. When they have medium concerns about risk and 

manipulation (i.e., 𝛾 = 3), their alphas are similar to the linear factor model alphas. When 

they have high concerns about risk and manipulation (i.e., 𝛾 = 4), their alphas are the most 

                                                 
10 According to Ferson and Lin (2014, footnote 22), they appear to compute the continuously compounded 

version of the MPPM given by equation (20). 
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negative of all models, consistent with alphas being inflated by manipulation for investors 

who care the most about it.  

Second, the MPPM alphas are difficult to estimate with precision. Looking at the 

distribution of the 𝑡-statistics on the right side of panel A, the proportions of funds with 

significant alphas at the 5% level are much lower for the MPPM than for other models. 

When 𝛾 = 2, only approximately 2% of funds have significantly positive alphas and fewer 

than 1% of funds have significantly negative alphas. When 𝛾 = 3, fewer than 1% of funds 

have significantly positive alphas and significantly negative alphas. When 𝛾 = 4, fewer 

than 1% of funds have significantly positive alphas and approximately 2.5% of funds have 

significantly negative alphas. Consistent with this imprecision, the mean alphas are not 

significantly different from zero for the three values of 𝛾 considered in this paper. 

Third, the MPPM results in much larger cross-sectional standard deviations of fund 

alphas compared with the other models. (Panel B confirms that it produces a significantly 

larger dispersion of alphas than the BC measure.) In previous subsections, we found that 

the highest dispersion belongs to the BC SDF and attributed the finding to the large 

disagreement it produces for funds with returns difficult to span by the most favorable 

investors. The even larger MPPM alpha standard deviation raises the question of whether 

manipulation generates even more disagreement or whether it is the result of noisier MPPM 

alpha estimates. Ferson and Lin (2014) indirectly investigate the issue of disagreement with 

the MPPM and argue that manipulation is not likely to be the main source. The MPPM 

alpha distributions in panel A of table 3.7 provide evidence in support of their analysis. 

Looking at the interquartile range of alphas as an alternative measure, the MPPM alphas are 

less disperse than the BC alphas. In fact, for funds with alphas within the 5th and 95th 

percentiles, the MPPM generates dispersion in line with traditional parametric models. But 

the MPPM alpha distributions present a larger negative skewness, which is the reason for 

their larger standard deviations. For a small number of funds, manipulation-proofing their 

performance gives significantly lower alphas than their traditional or BC alphas. For these 

funds, it remains an open question whether the MPPM uncovers truly strong manipulation 

or whether their MPPM alpha estimates are simply very noisy.  
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Panel B of table 3.7 confirms that the disagreement between the MPPM and the BC 

measure is not statistically significant when 𝛾 = 2, but becomes important when 𝛾 = 3 and 

𝛾 = 4. When 𝛾 = 2, the mean difference in alphas of 0.116% (𝑡-stat = 1.24) is small and 

there is little evidence that the MPPM alphas are significantly different from the BC alphas. 

The MPPM with 𝛾 = 2, a specification in which the representative investors have relatively 

low concerns about risk and manipulation, thus gives alphas that are admissible and 

adequately represent the mean alpha for the most favorable clienteles. In the specifications 

where the representative investors are more concerned about risk and manipulation, the 

mean differences in alphas are equal to 0.286% (𝑡-stat = 2.03) when 𝛾 = 3 and 0.464% (𝑡-

stat = 2.12) when 𝛾 = 4. These statistically significant disagreement values are once again 

comparable to the results of Ferson and Lin (2014). Furthermore, for all the MPPM 

specifications, the correlations between their alphas and the BC alphas are the lowest 

among all candidate models, with estimates ranging from 0.15 to 0.30. These low values 

can be mostly attributed to the high MPPM alpha standard deviation rather than the low 

covariance between the alphas. Finally, on a fund-by-fund basis, 69.8% and 84.0% of the 

MPPM alphas are smaller than the BC alphas when, respectively, 𝛾 = 3 and 𝛾 = 4. 

Although the noise in MPPM alpha estimates makes the proportions of significantly 

smaller alphas being less than 10%, our evidence suggests that the MPPM with 𝛾 = 3 or 

𝛾 = 4 produces alphas that oftentimes suffer from the misrepresentation problem.  

3.5.7 Assessing the Severity of the Misrepresentation Problem with Worst Clientele 

Alphas  

Our analysis has thus far relied on a comparison between the best clientele and candidate 

alphas. Except for the MPPM measure with a low risk aversion parameter, we find that all 

candidate models are problematic. The unconditional and conditional linear factor models, 

the MPPM with a high risk aversion parameter and the LOP measure suffer from the 

misrepresentation problem. The consumption-based models suffer from the inadmissibility 

problem. The latter problem is a more damaging diagnosis for a performance measure 

because it indicates that the measure fails to meet the requirements for admissibility (most 

importantly, to correctly price passive portfolios) in such a significant way as to generate 

unreliable performance values. The misrepresentation problem is a less fundamental 
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problem that indicates when a measure provides pessimistic performance values in 

disagreement with the evaluation of the funds for their best clienteles.  

However, it is possible that a measure suffers so badly from the misrepresentation 

problem as to render it inadmissible: an inadmissibility problem can also be diagnosed 

when a candidate alpha is smaller than the lower admissible performance bound, called the 

“worst clientele alpha” by Chrétien and Kammoun (2015). Given the presence of the 

misrepresentation problem for many candidate models we investigate, this section assesses 

the severity of the problem by comparing the candidate alphas with the worst clientele 

alphas.  

From the solution to the lower bound problem derived by Cochrane and Saá-

Requejo (2000), the worst clientele (WC) alpha is given by 𝛼𝑊𝐶,𝑀𝐹 = 𝐸[𝑚𝑊𝐶𝑡𝑅𝑀𝐹𝑡] − 1, 

where the WC SDF is 𝑚𝑊𝐶𝑡 = 𝑚𝐿𝑂𝑃𝑡 − 𝑣𝑤𝑡. Using the estimation strategy presented 

previously, with the same passive portfolios and allowing for the same maximum Sharpe 

ratio (i.e., ℎ̅ = ℎ∗ + 0.5ℎ𝑀𝐾𝑇), we estimate the WC alphas and compute the disagreement 

between the WC and candidate alphas for five candidate models: the FF and CARHART 

linear factor models, their conditional versions (i.e., CFF and CCARHART) and the MPPM 

with risk aversion parameter 𝛾 = 4. Empirically, these parametric models generate the most 

negative mean alphas and hence suffer the most from the misrepresentation problem.  

Table 3.8 presents the results, using a format similar to tables 3.2 to 3.7, with the 

performance results for the candidate models repeated from previous tables for ease of 

comparison. In panel A, the cross-sectional distribution of the WC alphas has a mean of -

0.594% (𝑡-stat = -7.26) and a standard deviation of 0.388%. As documented by Chrétien 

and Kammoun (2015), the worst clienteles value funds more negatively than previous 

evidence shows. Panel B looks at the disagreement between WC alphas and candidate 

alphas, and shows that the five candidate models do not suffer from an inadmissibility 

problem with respect to the lower bound. Their mean differences in alphas vary from -

0.366% (𝑡-stat = -2.11) for the MPPM with 𝛾 = 4 to -0.507 (𝑡-stat = 9.27) for the FF 

model, indicating that the candidate alphas are significantly higher than the WC alphas. 

Nevertheless, except for the CFF model, the correlations between the candidate alphas and 
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the WC alphas are higher than their corresponding values computed with the BC alphas. 

This result suggests that the representative investors behind the candidate models are more 

related to the worst clienteles than to the best clienteles. On a fund-by-fund basis, the 

candidate alphas are larger than the WC alphas for more than 94% of funds, significantly so 

for at least 78% of funds for the linear factor models and 11.5% of funds for the MPPM. 

Overall, these findings confirm the admissibility of the candidate models that suffer from 

the misrepresentation problem, because their alphas are within the lower and upper 

admissible performance bounds. 

3.6 Conclusion 

This paper examines standard performance measures by comparing their alpha with the 

alpha from a performance measure that evaluates mutual funds from the point of view of 

their most favorable investors. This yardstick for comparison is termed “best clientele 

alpha” by Chrétien and Kammoun (2015), and we obtain it by estimating the upper 

admissible bound under the law-of-one-price and no-good-deal conditions developed by 

Cochrane and Saá-Requejo (2000).  

Two alternative hypotheses are insightful in our setup. On one hand, an 

inadmissibility problem occurs when a candidate alpha is greater than the upper admissible 

bound that is the best clientele alpha. On the other hand, a misrepresentation problem 

occurs when a candidate alpha is lower than the best clientele alpha, because the candidate 

alpha provides a “severe” or “pessimistic” evaluation of the fund that does not adequately 

reflect the more useful evaluation from its best potential clienteles. The misrepresentation 

problem is also indicative of large investor disagreement in performance evaluation.  

We conduct our investigation on twelve candidate models: four unconditional linear 

factor models (the CAPM and the Fama and French (1993), Carhart (1997) and Ferson and 

Schadt (1996) models), four conditional linear factor models (conditional versions of the 

previous four models), two consumption-based models (a power utility model and an 

external habit-formation model), the manipulation proof performance measure (MPPM) of 

Goetzmann, Ingersoll, Spiegel and Welch (2007) and the nonparametric LOP measure of 

Chen and Knez (1996). As we vary parameter choices for some models, we consider a total 
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of 21 specifications for the twelve models. We use a sample of 2786 actively-managed 

open-ended U.S. equity mutual funds with returns from 1984 to 2012 to perform our 

diagnosis of these models.  

Among the empirical implementations of our candidate models, the case of the 

MPPM is particularly noteworthy. This paper is the first to estimate monthly effective 

MPPM SDF alphas, their standard errors and their 𝑡-statistics for a large sample of equity 

mutual funds. To our knowledge, no estimation strategy allowing for statistical inferences 

on the significance of the performance values exists in the MPPM literature. Our empirical 

results for the MPPM document three interesting findings. First, the MPPM alphas are 

relatively sensitive to the choice of risk aversion parameter so that when the MPPM 

representative investors have low concerns about risk and manipulation, their alphas tend to 

be positive, but when they have high concerns, their alphas are the most negative of all 

models, consistent with traditional alphas being inflated by manipulation from the point of 

view of investors who care the most about it. Second, the MPPM alphas are difficult to 

estimate with precision and the proportions of funds with significant alphas are much 

lower. Third, the MPPM generates a much larger cross-sectional standard deviation of fund 

alphas compared with the other models because its alpha distribution presents a large 

negative skewness. For a small number of funds, manipulation-proofing their performance 

gives significantly lower alphas than their traditional or best clientele alphas.  

Finally, our comparison between candidate alphas and best clientele alphas shows 

that most models generally misrepresent the value of mutual funds for the most favorable 

clienteles. Specifically, the unconditional linear factor models, their conditional versions, 

the MPPM with high risk aversion parameter and the LOP measure give a severe but 

admissible evaluation of fund performance. The average performance disagreement 

between the best clienteles and the representative investors from these candidate models, 

measured by the mean difference between their alphas, vary from 0.283% to 0.464%. These 

economically and statistically significant disagreement values are comparable to the results 

of Ferson and Lin (2014). In opposite, alphas from consumption-based models are 

oftentimes not admissible because they are too high. Among all models, we find that a 
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MPPM with a low risk aversion parameter is the most appropriate in providing admissible 

alphas that reflect the value of funds for the best clienteles.  

There are many avenues for future research relevant to our analysis. For example, the 

diagnostic tool proposed in this paper is sufficiently general that it could be applied to 

document the misrepresentation and inadmissibility problems of numerous other 

performance models, potentially using other types of investment portfolios. Future research 

could also identify and study the determinants of our performance disagreement measure to 

characterize funds for which investors strongly disagree. As discussed by Ferson (2010) 

and Ferson and Lin (2014), better understanding investor disagreement and developing 

clientele-specific performance measures are important challenges for future research. This 

paper makes sizeable contributions in that regard.  
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Table 3.1: Summary Statistics 

Table 3.1 presents summary statistics for the monthly data from January 1984 to December 

2012. Panel A shows cross-sectional summary statistics (average (Mean), standard 

deviation (Std Dev) and selected percentiles) on the distributions of the average (Mean), 

standard deviation (SD), minimum (Min), maximum (Max) and Sharpe ratio (h) for the 

returns on 2786 actively-managed open-ended U.S. equity mutual funds. Panel B gives the 

average (Mean), standard deviation (SD), minimum (Min), maximum (Max) and Sharpe 

ratio (h) for the factors, information variables and passive portfolio returns. Factors include 

the Fama-French market, size and value factors (MKT-RF, SMB and HML), the Carhart 

momentum factor (MOM), the Ferson-Schadt four factors (large stock (LS), small stock 

(SS), long-term government bond (LTGB) and low-grade corporate bond (LGCB)) and 

consumption growth (CG). The information variables are lagged values of the dividend 

yield on the S&P500 Index (DIV), the yield on the three-month Treasury bills (YLD), the 

term spread (TERM) and the default spread (DEF). The passive portfolios include ten 

industry portfolios (consumer nondurables (NoDur), consumer durables (Dur), 

manufacturing (Manuf), energy (Enrgy), high technology (HiTec), telecommunication 

(Telcm), shops (Shops), healthcare (Hlth), utilities (Utils), and other industries (Other)), 

and the risk free asset (RF) based on the one-month Treasury bills. All statistics are in 

percentage except for the Sharpe ratios. 

Panel A: Mutual Fund Returns and Carhart Alphas 

 
Mutual Fund Returns Carhart Alphas 

 
Mean StdDev Min Max      h 𝛼𝑀𝐹 𝑡-statistics 

Mean 0.7338 5.3400 -19.9976 16.4080  0.0857 -0.1200 -0.7398 

StdDev 0.3008 1.5632 5.6560 7.8772  0.0532 0.2456 1.2534 

(𝑡-stat)      (-2.321)  

        
99% 1.3677 10.3594 -5.5453 41.5517  0.1990 0.4231 2.2289 

95% 1.1405 8.2353 -12.8253 32.5704  0.1593 0.2120 1.3169 

90% 1.0453 7.2002 -14.4430 27.0565  0.1427 0.1271 0.8321 

75% 0.9044 6.0719 -16.5652 18.5645  0.1178 0.0109 0.0731 

Median 0.7464 5.0272 -19.4020 14.1103  0.0900 -0.1016 -0.7466 

25% 0.5946 4.3865 -22.9302 11.4669  0.0613 -0.2214 -1.5149 

10% 0.4232 3.8968 -26.3190 9.9918  0.0229 -0.3811 -2.2580 

5% 0.2943 3.4811 -29.0886 9.0829 -0.0033 -0.5037 -2.7996 

1% -0.1139 1.6197 -36.9313 5.3715 -0.0827 -0.8329 -4.1538 
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Table 3.1: Summary Statistics (continued) 

Panel B: Passive Portfolio Returns and Information Variables 

 
Mean StdDev Min Max h 

Industry Portfolios 

NoDur 1.1713 4.3493 -21.0300 14.7400 0.1962 

Durbl 0.8311 7.0347 -32.8900 42.9200 0.0698 

Manuf 1.0667 5.1203 -27.3200 17.7800 0.1420 

Enrgy 1.1223 5.3691 -18.3900 19.1300 0.1459 

HiTec 0.9338 7.2260 -26.1500 20.4600 0.0822 

Telcm 0.9689 5.2612 -15.5600 22.1200 0.1199 

Shops 1.0394 5.0898 -28.3100 13.3800 0.1375 

Hlth 1.1140 4.7552 -20.4700 16.5400 0.1636 

Utils 0.9444 3.9952 -12.6500 11.7600 0.1521 

Other 0.8829 5.3165 -23.6800 16.1100 0.1024 

Style Portfolios, Market Portfolio and Risk-Free Asset 

B/L 0.9403 4.7004 -23.1900 14.4500 0.1281 

B/M 0.9705 4.5832 -20.3200 14.8500 0.1378 

B/H 0.9279 5.2367 -24.4700 22.1600 0.1126 

S/L 0.8037 6.7657 -32.3400 27.0200 0.0685 

S/M 1.1221 5.2548 -27.5700 18.8700 0.1487 

S/H 1.2282 6.2180 -28.0500 38.3900 0.1426 

      
MKT 0.9174 4.5814 -22.5363 12.8496 0.1262 

RF 0.3393 0.2166 0.0000 1.0000 - 

Information Variables 

DIV 2.4649 0.9204 1.0800 4.9900 - 

YLD 4.1264 2.6038 0.0100 10.4700 - 

TERM 1.9419 1.1392 -0.5300 3.7600 - 

DEF 1.0255 0.4046 0.5500 3.3800 - 
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Table 3.2: Performance Disagreement for the LOP measure 
This table shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with 

the best clientele (BC) performance measure and the LOP performance measure of Chen and Knez 

(1996). The BC measure allows for a maximum Sharpe ratio of ℎ∗ + 0.5ℎ𝑀𝐾𝑇 (see definition in 

section 3.3.2) and uses ten industry portfolios and the risk-free asset as passive portfolios. Panel A 

provides the mean, standard deviation (Std Dev) and selected percentiles of the distributions of 

estimated alphas (columns under Performance) and their corresponding 𝑡-statistics (columns under 

𝑡-statistics). It also reports the 𝑡-statistics (𝑡-stat) on the significance of the mean of the estimated 

alphas (see test description in section 3.3.3). Panel B gives results on the disagreement between BC 

alphas and LOP alphas (the candidate alphas). On the left side of the panel, it reports differences in 

mean alphas and standard deviations of alphas, their 𝑡-statistics (𝑡-stat), and correlations between 

alphas (Corr). On the right side of the panel, it reports proportions of estimated candidate alphas 

that are smaller (% 𝛼𝜑 < 𝛼̅𝐵𝐶), significantly smaller (% 𝛼𝜑𝑠𝑖𝑔 < 𝛼̅𝐵𝐶), larger (% 𝛼𝜑 > 𝛼̅𝐵𝐶) and 

significantly larger (% 𝛼𝜑𝑠𝑖𝑔 > 𝛼̅𝐵𝐶) than the BC alphas. The data (see description in table 3.1) are 

from January 1984 to December 2012. All statistics are in percentage except the 𝑡-statistics and the 

correlation. 

Panel A: Alphas and 𝒕-statistics for the Cross-Section of Mutual Funds 

 
Performance 

 
𝑡-statistics 

 
BC LOP 

 
BC LOP 

Mean 0.2360 -0.1789 
 

1.0220 -1.2291 

Std Dev 0.3344 0.2707 
 

1.4333 1.4743 

(𝑡-stat) (3.351) (-3.138) 
   

99% 1.2708 0.3580 
 

4.4955 2.0211 

95% 0.7851 0.1787 
 

3.3544 1.0473 

90% 0.644 0.0967 
 

2.7535 0.5435 

75% 0.4225 -0.0364 
 

1.9417 -0.2258 

Median 0.1841 -0.1630 
 

1.0652 -1.1398 

25% 0.0223 -0.2854 
 

0.1720 -2.1715 

10% -0.1029 -0.4501 
 

-0.8232 -3.1627 

5% -0.1909 -0.5978 
 

-1.4254 -3.6814 

1% -0.4353 -0.9247 
 

-2.6052 -4.8763 

Panel B: Performance Evaluation Disagreement 
 

 Mean Diff 0.4149 % 𝛼𝜑 < 𝛼̅𝐵𝐶 100.00 

 (𝑡-stat) (8.178) % 𝛼𝜑𝑠𝑖𝑔 < 𝛼̅𝐵𝐶  99.57 

 SD Diff 0.0637 % 𝛼𝜑 > 𝛼̅𝐵𝐶 0.00 

 (𝑡-stat) (15.777) % 𝛼𝜑𝑠𝑖𝑔 > 𝛼̅𝐵𝐶  0.00 

 Corr 0.7019   
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Table 3.3: Performance Disagreement for Unconditional Linear Factor Models  
This table shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with the best clientele (BC) performance measure and the CAPM, 

FF, CARHART and FS unconditional linear factor models. The BC measure allows for a maximum Sharpe ratio of ℎ∗ + 0.5ℎ𝑀𝐾𝑇 (see definition in section 

3.3.2) and uses ten industry portfolios and the risk-free asset as passive portfolios. Panel A provides the mean, standard deviation (Std Dev) and selected 

percentiles of the distributions of estimated alphas (columns under Performance) and their corresponding 𝑡-statistics (columns under 𝑡-statistics). It also reports 

the 𝑡-statistics (𝑡-stat) on the significance of the mean of the estimated alphas (see test description in section 3.3.3). Panel B gives results on the disagreement 

between BC alphas and linear factor model alphas (the candidate alphas). On the left side of the panel, it reports differences in mean alphas and standard 

deviations of alphas, their 𝑡-statistics (𝑡-stat), and correlations between alphas (Corr). On the right side of the panel, it reports proportions of estimated candidate 

alphas that are smaller (% 𝛼𝜑 < 𝛼̅𝐵𝐶), significantly smaller (% 𝛼𝜑𝑠𝑖𝑔 < 𝛼̅𝐵𝐶), larger (% 𝛼𝜑 > 𝛼̅𝐵𝐶) and significantly larger (% 𝛼𝜑𝑠𝑖𝑔 > 𝛼̅𝐵𝐶) than the BC 

alphas. The data (see description in table 3.1) are from January 1984 to December 2012. All statistics are in percentage except the 𝑡-statistics and the correlations. 
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Table 3.4: Performance Disagreement for Conditional Linear Factor Models 
This table shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with the best clientele (BC) performance measure and the 

CCAPM, CFF, CCARHART and CFS conditional linear factor models. The BC measure allows for a maximum Sharpe ratio of ℎ∗ + 0.5ℎ𝑀𝐾𝑇 (see definition in 

section 3.3.2) and uses ten industry portfolios and the risk-free asset as passive portfolios. The information variables used for conditional models are lagged 

values of the dividend yield on the S&P500 Index, the yield on three-month Treasury bills, the term spread and the default spread. Panel A provides the mean, 

standard deviation (Std Dev) and selected percentiles of the distributions of estimated alphas (columns under Performance) and their corresponding 𝑡-statistics 

(columns under 𝑡-statistics). It also reports the 𝑡-statistics (𝑡-stat) on the significance of the mean of the estimated alphas (see test description in section 3.3.3). 

Panel B gives results on the disagreement between BC alphas and conditional linear factor model alphas (the candidate alphas). On the left side of the panel, it 

reports differences in mean alphas and standard deviations of alphas, their 𝑡-statistics (𝑡-stat), and correlations between alphas (Corr). On the right side of the 

panel, it reports proportions of estimated candidate alphas that are smaller (% 𝛼𝜑 < 𝛼̅𝐵𝐶), significantly smaller (% 𝛼𝜑𝑠𝑖𝑔 < 𝛼̅𝐵𝐶), larger (% 𝛼𝜑 > 𝛼̅𝐵𝐶) and 

significantly larger (% 𝛼𝜑𝑠𝑖𝑔 > 𝛼̅𝐵𝐶) than the BC alphas. The data (see description in table 3.1) are from January 1984 to December 2012. All statistics are in 

percentage except the 𝑡-statistics and the correlations. 
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Table 3.5: Performance Disagreement for Power Utility Models 
This table shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with the best clientele (BC) performance measure and the power 

utility models (POWER) with 𝛾 = {2, 4, 6} and 𝛽 estimated so that so that the resulting SDFs correctly price the risk free return. The BC measure allows for a 

maximum Sharpe ratio of ℎ∗ + 0.5ℎ𝑀𝐾𝑇 (see definition in section 3.3.2) and uses ten industry portfolios and the risk-free asset as passive portfolios. Panel A 

provides the mean, standard deviation (Std Dev) and selected percentiles of the distributions of estimated alphas (columns under Performance) and their 

corresponding 𝑡-statistics (columns under 𝑡-statistics). It also reports the 𝑡-statistics (𝑡-stat) on the significance of the mean of the estimated alphas (see test 

description in section 3.3.3). Panel B gives results on the disagreement between BC alphas and POWER alphas (the candidate alphas). On the left side of the 

panel, it reports differences in mean alphas and standard deviations of alphas, their 𝑡-statistics (𝑡-stat), and correlations between alphas (Corr). On the right side of 

the panel, it reports proportions of estimated candidate alphas that are smaller (% 𝛼𝜑 < 𝛼̅𝐵𝐶), significantly smaller (% 𝛼𝜑𝑠𝑖𝑔 < 𝛼̅𝐵𝐶), larger (% 𝛼𝜑 > 𝛼̅𝐵𝐶) and 

significantly larger (% 𝛼𝜑𝑠𝑖𝑔 > 𝛼̅𝐵𝐶) than the BC alphas. The data (see description in table 3.1) are from January 1984 to December 2012. All statistics are in 

percentage except the 𝑡-statistics and the correlations. 
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Table 3.6: Performance Disagreement for Habit-Formation Preference Models 
This table shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with the best clientele (BC) performance measure and the habit-

formation preference models (HABIT) with 𝛾 = {2, 4, 6}, 𝜇 = {0.8, 0.9} and 𝛽 estimated so that so that the resulting SDFs correctly price the risk free return. The 

BC measure allows for a maximum Sharpe ratio of ℎ∗ + 0.5ℎ𝑀𝐾𝑇 (see definition in section 3.3.2) and uses ten industry portfolios and the risk-free asset as 

passive portfolios. Panel A provides the mean, standard deviation (Std Dev) and selected percentiles of the distributions of estimated alphas (columns under 

Performance) and their corresponding 𝑡-statistics (columns under 𝑡-statistics). It also reports the 𝑡-statistics (𝑡-stat) on the significance of the mean of the 

estimated alphas (see test description in section 3.3.3). Panel B gives results on the disagreement between BC alphas and HABIT alphas (the candidate alphas). 

On the left side of the panel, it reports differences in mean alphas and standard deviations of alphas, their 𝑡-statistics (𝑡-stat), and correlations between alphas 

(Corr). On the right side of the panel, it reports proportions of estimated candidate alphas that are smaller (% 𝛼𝜑 < 𝛼̅𝐵𝐶), significantly smaller (% 𝛼𝜑𝑠𝑖𝑔 < 𝛼̅𝐵𝐶), 

larger (% 𝛼𝜑 > 𝛼̅𝐵𝐶) and significantly larger (% 𝛼𝜑𝑠𝑖𝑔 > 𝛼̅𝐵𝐶) than the BC alphas. The data (see description in table 3.1) are from January 1984 to December 

2012. All statistics are in percentage except the 𝑡-statistics and the correlations. 
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Table 3.7: Performance Disagreement for the Manipulation Proof Performance Measure 
This table shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with the best clientele (BC) performance measure and the 

manipulation proof performance measure (MPPM). The BC measure allows for a maximum Sharpe ratio of ℎ∗ + 0.5ℎ𝑀𝐾𝑇 (see definition in section 3.3.2) and 

uses ten industry portfolios and the risk-free asset as passive portfolios. Panel A provides the mean, standard deviation (Std Dev) and selected percentiles of the 

distributions of estimated alphas (columns under Performance) and their corresponding 𝑡-statistics (columns under 𝑡-statistics). It also reports the 𝑡-statistics (𝑡-

stat) on the significance of the mean of the estimated alphas (see test description in section 3.3.3). Panel B gives results on the disagreement between BC alphas 

and MPPM alphas (the candidate alphas). On the left side of the panel, it reports differences in mean alphas and standard deviations of alphas, their 𝑡-statistics (𝑡-

stat), and correlations between alphas (Corr). On the right side of the panel, it reports proportions of estimated candidate alphas that are smaller (% 𝛼𝜑 < 𝛼̅𝐵𝐶), 

significantly smaller (% 𝛼𝜑𝑠𝑖𝑔 < 𝛼̅𝐵𝐶), larger (% 𝛼𝜑 > 𝛼̅𝐵𝐶) and significantly larger (% 𝛼𝜑𝑠𝑖𝑔 > 𝛼̅𝐵𝐶) than the BC alphas. The data (see description in table 

3.1) are from January 1984 to December 2012. All statistics are in percentage except the 𝑡-statistics and the correlations. 
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Table 3.8: Performance Disagreement from the Worst Clientele Performance Alphas 
This table shows statistics on the cross-sectional distribution of monthly SDF alphas estimated with the worst clientele (WC) performance measure and five 

candidate models, i.e., the FF and CARHART unconditional linear factor models, the CFF and CCARHART conditional linear factor models and the 

manipulation proof performance measure with a risk aversion coefficient of 𝛾 = 4  (MPPM(4)). The WC measure allows for a maximum Sharpe ratio of ℎ∗ +
0.5ℎ𝑀𝐾𝑇 (see definition in section 3.3.2) and uses ten industry portfolios and the risk-free asset as passive portfolios. Panel A provides the mean, standard 

deviation (Std Dev) and selected percentiles of the distributions of estimated alphas (columns under Performance) and their corresponding 𝑡-statistics (columns 

under 𝑡-statistics). It also reports the 𝑡-statistics (𝑡-stat) on the significance of the mean of the estimated alphas (see test description in section 3.3.3). Panel B 

gives results on the disagreement between WC alphas and candidate model alphas. On the left side of the panel, it reports differences in mean alphas and standard 

deviations of alphas, their 𝑡-statistics (𝑡-stat), and correlations between alphas (Corr). On the right side of the panel, it reports proportions of estimated candidate 

alphas that are smaller (% 𝛼𝜑 < 𝛼𝑊𝐶), significantly smaller (% 𝛼𝜑𝑠𝑖𝑔 < 𝛼𝑊𝐶), larger (% 𝛼𝜑 > 𝛼𝑊𝐶) and significantly larger (% 𝛼𝜑𝑠𝑖𝑔 > 𝛼𝑊𝐶) than the worst 

clientele alphas. The data (see description in table 3.1) are from January 1984 to December 2012. All statistics are in percentage except the 𝑡-statistics and the 

correlations.  
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Figure 3.1: Standard Deviation of Stochastic Discount Factors for Performance 

Evaluation 

(a) 

 

(b) 

 
(c) 

 

(d) 

 

Notes: Figure 3.1 illustrates the standard deviation (Std Dev) of the stochastic discount factors 

(SDFs) for unconditional linear factor models (figure 3.1a), conditional linear factor models (figure 

3.1b), power utility models (figure 3.1c) and habit-formation preference models (figure 3.1d). The 

continuous line is the standard deviation of the law-of-one-price (LOP) SDF. The dashed line is the 

standard deviation of the best clientele (BC) SDF. 
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4 Mutual Fund Styles and Clientele-Specific Performance Evaluation 

 

Abstract 

This paper develops clientele-specific performance measures based on the style 

preferences of mutual fund investors. Using a new approach that considers investor 

disagreement and better exploits style classification data, we investigate eight measures 

to represent clienteles with favorable preferences for size and value equity styles. 

Empirically, we find that the performance of funds assigned to styles associated with 

clienteles becomes neutral or positive when they are evaluated with their appropriate 

measure. The performance of the other funds is sensitive to the clienteles, and in 

particular their behavioral characteristics. The sign of the value added by the industry is 

ambiguous and depends on the choice of measures. Our findings support a significant 

role for style clienteles in performance evaluation.    

 

Keywords: Portfolio Performance Measurement; Investment Styles; Performance 

Disagreement and Clientele Effects; Mutual Funds 
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Résumé 

Cet article développe des mesures de performance spécifiques aux clientèles basées sur les 

préférences de style des investisseurs dans les fonds mutuels. Utilisant une nouvelle 

approche qui considère le désaccord entre investisseurs et exploite mieux les données de 

classification en styles, nous investiguons huit mesures pour représenter des clientèles avec 

des préférences favorables aux styles d’actions basés sur la taille et la valeur. 

Empiriquement, nous trouvons que la performance des fonds classés dans des styles 

associés à des clientèles devient neutre ou positive quand ceux-ci sont évalués avec leur 

mesure appropriée. La performance des autres fonds est sensible aux clientèles et, en 

particulier, à leurs caractéristiques comportementales. Le signe de la valeur ajoutée de 

l’industrie des fonds est ambigu et dépend du choix de mesure. Nos résultats supportent un 

rôle significatif des clientèles de style en évaluation de performance.  
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4.1 Introduction  

Since the seminal contributions of Fama and French (1992, 1993), size (small-cap versus 

large-cap) and value (value versus growth) investment styles have grown so much in 

popularity among investors that equity style investing has become dominant in industry 

practices. Thousands of mutual funds now advertised themselves according to their size and 

value focuses, oftentimes starting with their names. They cater to and attract size and value 

clienteles who can rely on numerous style classification tools for their investment 

decisions. This economically significant style differentiation among funds and investors 

suggests that mutual fund performance evaluation should also differ for size and value 

clienteles.  

 Reviewing recent research, Ferson (2010) emphasizes the importance of identifying 

meaningful investor clienteles and developing clientele-specific performance measures to 

properly evaluate mutual funds. Many studies argue that investor heterogeneity and 

clientele effects influence the flow-performance relationship (Del Guercio and Tkac, 2002, 

Christoffersen, Evans and Musto, 2013), and are related to behavioral biases (Barber, 

Odean and Zheng, 2005, Bailey, Kumar and Ng, 2011), demographics and investor 

sophistication (Malloy and Zhu, 2004, Bailey, Kumar and Ng, 2011), investor monitoring 

and investment advice (James and Karceski, 2006, Bergstresser, Chalmers and Tufano, 

2009, Del Guercio and Reuter, 2014), liquidity demands (Nanda, Narayanan and Warther, 

2000), recession and risk aversion (Goetzmann and Massa, 2002, Glode, 2011), and 

taxation (Ivković and Weisbenner, 2009).  

 Given the predominance of style investing, equity styles are also relevant to identify 

meaningful investor clienteles. Barberis and Shleifer (2003) point out the growing interest 

of financial service firms to understand style preferences and there is a related literature that 

attempts to classify funds according to their correct styles (see Kim, Shukla and Tomas 

(2000), Brown and Goetzmann (1997) and Dibartolomeo and Witkowski (1997), among 

others). Also, Shefrin and Statman (1995, 2003), Blackburn, Goetzmann and Ukhov (2013) 

and Shefrin (2015) study the judgments, sentiment sensitivity and trading behavior of style 
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investors. They find that value and small-cap investors tend to be pessimists and 

contrarians, while growth and large-cap investors tend to be optimists and trend followers.  

Despite these contributions, the growing literature on style investors and clientele 

effects in mutual funds has not focused on developing performance measures that account 

for the heterogeneous preferences of the various clienteles. This paper develops clientele-

specific performance measures based on the implied style preferences of mutual fund 

investors and empirically investigates whether performance evaluation differs for size and 

value clienteles. Our approach has two distinctive features.  

First, we develop a performance framework with investor disagreement that allows 

for the identification of meaningful stochastic discount factors (SDFs) for style clienteles. 

The framework is based on the SDF alpha approach of Chen and Knez (1996) and is a 

refinement of the best clientele approach of Chrétien and Kammoun (2015). The 

performance measures are extracted from a set of SDFs admissible under the law-of-one-

price and no-good-deal conditions, an incomplete market setup initiated by Cochrane and 

Saá-Requejo (2000). Our identification strategy uses the empirical results of Ferson and Lin 

(2014) on the magnitude of investor disagreement and assumes that style portfolios are 

representative investments for style clienteles. This framework ensures that the 

performance measures correctly price passive portfolios and generates a realistic and 

sufficiently large disagreement to differentiate the style clienteles.   

Second, we introduce a new method to better exploit available style classification 

data in the CRSP mutual fund database. The method focuses on Lipper objective codes as 

they cover the most relevant period and facilitate the classification of funds into size and 

value styles. It also accounts for code changes and missing codes by using a threshold for 

style inclusion that considers whether a fund has been assigned to a code for enough time. 

The method is thus based on publicly available information from a leading industry 

provider that clienteles could presumably consult to form their investment decisions, 

considers the stability and quality of the code data, and avoid the ad hoc attribution of 

codes into style categories. Using the method, we classify the funds and their clienteles into 

eight size and value categories: four general styles attractive to broader clienteles (small-
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cap, large-cap, value and growth) and four specific styles attractive to more specialized 

clienteles (large-cap growth, small-cap growth, large-cap value and small-cap value).  

Using a sample of 2530 actively-managed open-ended U.S. equity mutual funds 

with monthly returns from 1998 to 2012, our empirical investigation makes three 

contributions. First, we study the economic properties of the SDFs identified by our 

approach with a nonlinear approximation that can be interpreted from a rational or 

behavioral perspective, following Dittmar (2002) and Shefrin (2008, 2009). We find that 

the preferences implied by the style clientele SDFs have similar risk aversion but differ in 

their behavioral features. The SDFs imply value and small-cap investors who tend to be 

pessimists and contrarians, and growth and large-cap investors who tend to be optimists 

and trend followers. Hence, the SDFs are not only different enough to generate 

performance disagreement, but they are also consistent with the individual investor 

behavior documented by Shefrin and Statman (1995, 2003), Blackburn, Goetzmann and 

Ukhov (2013) and Shefrin (2015).  

Second, we implement a clientele-specific performance evaluation using the style 

clientele SDFs. We find that the funds assigned to size and value styles have neutral to 

positive average alphas when they are evaluated with their appropriate clientele-specific 

measure. Hence, the evaluation considers relevant clienteles, fund performance is more 

positive than existing evidence shows (see Fama and French (2010) and Barras, Scaillet 

and Wermers (2010) for recent examples). The performance of the other funds is sensitive 

to the clienteles. Specifically, their average alphas are significantly negative to neutral for 

value and small-cap clienteles, but neutral to significantly positive for growth and large-cap 

clienteles. For these funds, the behavioral features of the investor SDFs are important 

determinants of performance evaluation.  

 Third, we document the value added of the mutual fund industry from the 

perspective of different style clienteles. Given that funds are attributed multiple 

performance values by the SDFs, we examine many cross-sectional performance 

distributions by considering either the minimum or maximum alpha of each fund. The 

results show that the sign of the value added is ambiguous and depends on the choice of 
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measures. But they suggest that the value added is greater for growth and large-cap 

investors than for value and small-cap investors, although the difference is sensitive to the 

magnitude of disagreement allowed in our performance framework.  

 Overall, this paper shows that preferences and performance evaluations differ for 

size and value mutual fund clienteles. It is an important first step toward confirming the 

conjecture of Ferson (2010) that clientele-specific measures based on meaningful investor 

clienteles might be necessary to properly evaluate mutual funds. The clientele-specific 

performance evaluation approach we propose can also serve as a useful framework for 

developing measures that account for the clientele effects documented in the literature. 

Such measures could be important because our findings support a significant role for 

clienteles in performance evaluation.  

The remainder of this paper is organized as follows. Section 4.2 develops a 

theoretical framework for performance measurement with style clienteles. Section 4.3 

presents the methodology for estimating and summarizing the results. Section 4.4 describes 

the data. Section 4.5 presents the style classification method and results. Section 4.6 reports 

and analyzes the empirical results. Finally, section 4.7 provides the conclusion. 

4.2 Performance Measures for Style Clienteles: Theoretical Framework 

Using the stochastic discount factor (hereafter SDF) approach, this section develops a 

framework for performance evaluation under the assumption that there are style clienteles. 

First, we present a basic setup for performance evaluation with investor disagreement. 

Second, we describe our strategy for identifying meaningful SDFs for style clienteles. 

Third, we propose style-clientele-specific performance measures for the evaluation of 

individual mutual funds. 

4.2.1 Performance Evaluation with Investor Disagreement 

This paper exploits the general framework of the SDF performance approach, first 

proposed by Glosten and Jagannathan (1994) and Chen and Knez (1996), to allow for 

investor disagreement that occurs when an investor evaluates a fund differently from 

another investor (see Ahn, Cao and Chrétien (2009), Ferson (2010) and Ferson and Lin 
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(2014) and Chrétien and Kammoun (2015)). In this approach, the performance, or SDF 

alpha, is defined from the following equation:  

(1) 𝛼𝑀𝐹 = 𝐸[𝑚 𝑅𝑀𝐹] − 1, 

 

where 𝑚 is the SDF of an investor interested in valuing an individual mutual fund with 

gross return 𝑅𝑀𝐹. Unlike most of the literature, this paper does not assume that there is a 

unique SDF for all investors. Instead, we view a fund investor’s SDF as part of a set 𝑀 of 

admissible SDFs that allow for investor disagreement and heterogeneous preferences.  

Under general conditions, in an incomplete market, Chen and Knez (1996) show 

that there is an infinite number of admissible SDFs that generates a potentially infinite 

alpha disagreement between investors. To restrict SDFs in an economically meaningful 

way, we follow Hansen and Jagannathan (1991), Cochrane and Saá-Requejo (2000) and 

Chrétien and Kammoun (2015), and impose two conditions: the law-of-one-price condition 

and the no-good-deal condition. The law-of-one-price condition assumes that mutual fund 

investors give zero performance to passive portfolios. The no-good-deal condition assumes 

that investors do not allow investment opportunities that have too large Sharpe ratios.  

These restrictions are equivalent to limiting the variability of admissible SDFs. 

Specifically, Cochrane and Saá-Requejo (2000) show that, under these two conditions, for 

all 𝑚 ∈ 𝑀, the SDF standard deviation is bounded as follows:  

(2) 
ℎ∗

𝑅𝐹
≤ 𝜎(𝑚) ≤

ℎ̅

𝑅𝐹
, 

where ℎ∗ is the optimal Sharpe ratio attainable from the passive portfolios, ℎ̅ is the 

maximum allowable Sharpe ratio for investments not considered good deals and 𝑅𝐹 is the 

gross risk-free return. Intuitively, we can interpret the SDFs as representing the marginal 

preferences of mutual fund investors. Equation (2) stipulates that the variability of their 

marginal utilities should be large enough to correctly price existing passive portfolios, but 
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small enough to rule out implausibly high risk aversion that would allow good deals to be 

viable.  

The SDFs admissible under these conditions are advantageous for performance 

evaluation for two reasons. First, they do not suffer from the benchmark choice problem 

that occurs when a selected benchmark does not correctly price passive portfolios (Chen 

and Knez, 1996, Fama, 1998, Ahn, Cao and Chrétien, 2009, and Chrétien and Kammoun, 

2015). Second, they allow for a reasonable investor disagreement consistent with the 

analysis of Ferson and Lin (2014). Specifically, as the set 𝑀 of SDFs is closed and convex, 

there is a finite alpha disagreement between investors because it is possible to find lower 

and upper performance bounds:  

(3) 𝛼𝑀𝐹 ≤ 𝛼𝑀𝐹 ≤ 𝛼̅𝑀𝐹 , 

Chrétien and Kammoun (2015) call these bounds the worst and best clientele alphas, 

respectively. Using equity mutual funds, they document disagreement values comparable to 

those of Ferson and Lin (2014) and significant enough to change the value of funds from 

negative to positive, depending on the clienteles. Their results confirm the analysis of 

Ferson and Lin (2014) on the economic importance of investor disagreement and clientele 

effects in performance evaluation.  

 Although Chrétien and Kammoun (2015) show the relevancy of the admissible 

SDFs used in this study, the goals of the papers are different. By estimating fund-specific 

bounds, they document the performance for the best and worst clienteles of each individual 

mutual fund. Instead of focusing on fund-specific clienteles, this paper examines general 

clienteles interested in particular investment styles within the mutual fund industry. The 

next subsection provides a strategy for selecting specific SDFs in 𝑀 that identify these 

general style clienteles.  

4.2.2 Stochastic Discount Factors for Style Clienteles 

Ferson (2010) emphasizes the importance of identifying meaningful investor clienteles in 

mutual funds. This paper assumes that grouping funds by their investment style is a 
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relevant strategy for this purpose. Let 𝑅𝑠 be the gross return on a portfolio of funds grouped 

according to their similar style 𝑠. For simplicity, let 𝑆 represents the set of styles under 

consideration (i.e., 𝑆 = {Value, Growth, etc. }) as well as the total number of styles. Using 

any 𝑚 ∈ 𝑀, we can measure the performance, or alpha, of this style portfolio by:  

(4) 𝛼𝑠 = 𝐸[𝑚 𝑅𝑠] − 1. 

 

Given the existence of many admissible SDFs, investors likely disagree on the alpha of this 

style portfolio. Our approach stipulates that the SDF at the upper performance bound is a 

meaningful SDF for representing the clienteles favorable to the style.  

 Specifically, to find the SDF for clienteles most favorable to the investment style 

providing a return 𝑅𝑠, we solve the following problem:  

(5) 𝛼̅𝑠 = 𝑠𝑢𝑝
𝑚∈𝑀

𝐸[𝑚 𝑅𝑠] − 1, 

(6) subject to 𝐸[𝑚 𝐑𝐊] = 𝟏,  𝐸[𝑚2] ≤  
(1+ℎ̅2)

𝑅𝐹
2 , 

where 𝐸[𝑚 𝐑𝐊] = 𝟏 is law-of-one-price condition, with 𝐑𝐊 being a vector of gross returns 

on 𝐾 passive portfolios and 𝟏 is a 𝐾 × 1 unit vector, and 𝐸[𝑚2 ] ≤  
(1+ℎ̅2)

𝑅𝐹
2  is the no-good-

deal condition, with ℎ̅ being the maximum Sharpe ratio allowed. Cochrane and Saá-

Requejo (2000) demonstrate that this problem has the following closed-form solution:  

(7) 𝛼̅𝑠 = 𝐸[𝑚̅𝑠 𝑅𝑠] − 1, 

with:  

(8) 𝑚̅𝑠 = 𝑚𝐿𝑂𝑃 + 𝑣𝑠𝑤𝑠, 
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(9) 𝑚𝐿𝑂𝑃 = 𝐚′𝐑𝐊, 

(10) 𝑤𝑠 = 𝑅𝑠 − 𝐜𝐬
′𝐑𝐊, 

where: 

(11) 𝐚′ = 𝟏′𝐸[𝐑𝐊 𝐑𝐊
′ ]−1, 

(12) 𝐜𝐬
′ = 𝐸[𝑅𝑠 𝐑𝐊

′ ] 𝐸[𝐑𝐊 𝐑𝐊
′ ] −1, 

(13) 
𝑣𝑠 =

√
(

(1 + ℎ̅2)

𝑅𝐹
2 − 𝐸[𝑚𝐿𝑂𝑃

2 ])

𝐸[𝑤𝑠
2]

. 

In this solution, 𝛼̅𝑠 is the upper bound on the (expected) alpha of a style portfolio, 

i.e., the highest average performance value found from the heterogeneous investors with 

SDFs in the set 𝑀. The SDF that solves the problem is denoted by 𝑚̅𝑠 and called the “style 

clientele” SDF for investment style 𝑠. It identifies the SDF for the class of investors most 

favorable to style 𝑠 and hence provides a way to obtain meaningful SDFs for various style 

clienteles. Its first component, 𝑚𝐿𝑂𝑃, is shown by Hansen and Jagannathan (1991) to be the 

minimum volatility SDF under the law-of-one-price condition, and used by Chen and Knez 

(1996) for their LOP performance measure. As indicated by the notation, it is common to 

all style clientele SDFs because it depends only on the passive portfolio returns and does 

not vary with the style portfolio investigated.  

Its second component, 𝑣𝑠𝑤𝑠, is a clientele-specific component that accounts for 

investor disagreement. The replicating error term 𝑤𝑠 is the difference between the style 

portfolio return and the best replicating payoff constructed from the passive portfolio 

returns. The disagreement parameter 𝑣𝑠 accounts for the no-good-deal restriction and is a 

function of the maximum Sharpe ratio ℎ̅. The second component thus indicates that 



 

145 

investors mostly agree on the evaluation of style portfolios that have easy-to-replicate 

returns or when they consider most allowable investment opportunities as good deals. In 

other instances, there can be significant clientele effects in performance evaluation.  

4.2.3 Style-Clientele-Specific Performance Evaluation 

Ferson (2010) discusses the importance of clientele-specific performance measures to 

properly evaluate mutual funds and calls for the development of such measures. Section 

4.2.2 provides a strategy to identify meaningful SDFs for style clienteles that can be 

exploited for such a purpose. Assuming that 𝑆 representative investment style portfolios 

can be formed, the strategy yields 𝑆 different style clientele SDFs, i.e., 𝑚̅𝑠 for all 𝑠 ∈ 𝑆. 

This section describes how these SDFs can be used in a style-clientele-specific performance 

evaluation.  

 The evaluation necessitates that we distinguish between two types of individual 

mutual funds. The first type includes funds assigned to investment styles associated with 

clienteles. Performance measurement for these funds is relatively straightforward because 

we can use their associated style clientele SDFs. Let 𝑅𝑀𝐹,𝑠 be the gross return on a fund 

assigned to style 𝑠 associated with a clientele. Its unique style-clientele specific alpha is 

given by:   

(14) 𝛼𝑀𝐹,𝑠 = 𝐸[𝑚̅𝑠𝑅𝑀𝐹,𝑠] − 1. 

The second type includes funds not assigned to investment styles associated with clienteles. 

Such funds could have a style different from the ones considered, frequent changes of 

styles through time or missing style classification information. Because it is not possible to 

select a unique style clientele SDF for these funds, we instead examine their performance 

for all clienteles. Let 𝑅𝑀𝐹,− be the gross return on a fund not assigned to a style associated 

with a clientele. Its multiple style-clientele specific alphas are given by:   

(15) 𝛼𝑀𝐹,𝑠 = 𝐸[𝑚̅𝑠𝑅𝑀𝐹,−] − 1, for all 𝑠 ∈ 𝑆. 
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Equations (14) and (15) simply specify that we evaluate the performance of 

individual mutual funds using their appropriate style-clientele performance measures. 

When a fund can be related to a clear style, it likely caters to and attracts the clienteles most 

favorable to its style. It thus makes sense to use the style clientele SDF associated with its 

style for performance measurement. Even though this SDF implies preferences that are 

favorable to the style of the fund, it can still evaluate the fund positively or negatively, 

depending on how the fund differs from the style portfolio that includes other funds of 

similar style. However, when a fund cannot be related to a clear style, it could presumably 

cater to and attract all types of clienteles. By considering all the style-clientele-specific 

performance measures for evaluation, we can account for the disagreement between 

clienteles on the value of this fund.  

4.3 Methodology 

4.3.1 Estimation 

The style clientele SDF has an analytical solution that has 2𝐾 + 1 parameters to estimate. 

We use the generalized method of moments (GMM) of Hansen (1982) for estimation and 

inferences. For a sample of 𝑇 observations, we rely on a just-identified system with the 

following moments: 

(16) 
1

𝑇
∑[(𝐚′𝐑𝐊𝐭)𝐑𝐊𝐭] − 𝟏 = 0,

𝑇

𝑡=1

 

 

(17) 

1

𝑇
∑[(𝑅𝑠𝑡 − 𝐜𝒔′𝐑𝐊𝐭)𝐑𝐊𝐭] = 0

𝑇

𝑡=1

, 

 

(18) 

1

𝑇
∑[(𝐚′𝐑𝐊𝐭 + 𝑣𝑠(𝑅𝑠𝑡 − 𝐜𝒔′𝐑𝐊𝐭))𝑅𝑠𝑡]

𝑇

𝑡=1

− 1 − 𝛼̅𝑠 = 0. 
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Equation (16) uses the fundamental SDF pricing equation to set the 𝐾 moments 

needed to correctly price the 𝐾 passive portfolios, estimating the 𝐾 × 1 vector of 

coefficients 𝐚. It allows the estimation of the LOP SDF of Chen and Knez (1996), 𝑚𝐿𝑂𝑃𝑡 =

𝐚′𝐑𝐊𝐭. Equation (17) specifies the 𝐾 orthogonality conditions between the replication error 

term, 𝑤𝑠𝑡 = 𝑅𝑠𝑡 − 𝐜𝒔′𝐑𝐊𝐭, and passive portfolio returns. They estimate the linear 

combination of passive portfolio returns that best replicates the style portfolio return, 

estimating the 𝐾 × 1 vector of coefficients 𝐜. The moment in equation (18) allows the 

estimation of the disagreement parameter 𝑣𝑠, which completes the estimation of the style 

clientele SDF 𝑚̅𝑠𝑡 = 𝐚′𝐑𝐊𝐭 + 𝑣𝑠(𝑅𝑠𝑡 − 𝐜𝒔′𝐑𝐊𝐭). The estimation of 𝑣𝑠 implements an 

empirical version of equation (7) and requires an exogenously specified value for 𝛼̅𝑠, the 

upper performance bound on the style portfolio or expected alpha for clienteles most 

favorable to the style. Section 4.3.2 expands on this method for estimating 𝑣𝑠 and discusses 

our approach to select the value of 𝛼̅𝑠, exploiting the results of Ferson and Lin (2014).  

To evaluate the performance of individual mutual funds with the style clientele 

SDF, we add the following moment to the previous system:  

(19) 
1

𝑇
∑[𝑚̅𝑠𝑡𝑅𝑀𝐹𝑡]

𝑇

𝑡=1

− 1 − 𝛼𝑀𝐹,𝑠 = 0, 

where the gross mutual fund return 𝑅𝑀𝐹𝑡 represents the return on a fund assigned to a style 

𝑠 associated with a clientele, 𝑅𝑀𝐹,𝑠𝑡, or the return on a fund not assigned to a style 

associated with a clientele, 𝑅𝑀𝐹,−𝑡. This moment represents the empirical counterpart of the 

style-clientele-specific performance measures proposed in this paper.  

In all estimation cases, our procedure estimates alpha separately for each fund. 

Farnsworth, Ferson, Jackson and Todd (2002) demonstrate that estimating this system for 

one fund at a time produces the same point estimates and standard errors for alpha as a 

system that includes an arbitrary number of funds. Also, the parameter estimates are not 

influenced by the choice of the weighting matrix in GMM because the systems are just 

identified. Their statistical significance is assessed with the asymptotic properties of GMM 
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derived by Hansen (1982), with standard errors adjusted for conditional heteroskedasticity 

and serial correlation using the method of Newey and West (1987) with two lags.1  

4.3.2 Methodological Choices 

Empirically, this paper investigates the style clienteles and performance of actively-

managed U.S. equity mutual funds. The estimation of the previous system requires three 

important methodological choices in relation to these funds. The first and perhaps most 

important choice is the style classification of funds and the formation of style portfolios. 

Section 4.5 examines this choice carefully and introduces a new approach to better exploit 

available style classification data in the CRSP Survivor-Bias-Free US Mutual Fund 

Database. It shows that the resulting style classifications and portfolios, defined by size and 

value sorts, are relevant for our methodology. This subsection discusses the second and 

third choices: the value of the upper performance bound on the style portfolio return, 𝛼̅𝑠, 

and the assets to form the passive portfolio returns 𝐑𝐊.  

As discussed in section 4.3.1, the estimation of 𝑣𝑠 with equation (18) necessitates a 

pre-specified value of 𝛼̅𝑠. This value should be a realistic alpha for clienteles attracted to 

the style, because it ultimately identifies the SDF meant to capture the marginal preferences 

of the class of investors most favorable to the style. Ferson and Lin (2014) provide an 

indirect way to select a relevant value and we exploit their results. They study the effects of 

investor disagreement on performance evaluation and estimate bounds for the expected 

disagreement with a traditional alpha for various benchmark returns. For example, using 

the factors of Fama and French (1993) and a sample of funds similar to ours, they find 

mean and median monthly bound values of 0.248% and 0.212%, respectively (Ferson and 

Lin, 2014, table 3, panel A). Hence, their results suggest that clienteles most favorable to a 

fund could realistically expect mean and median alphas of 𝛼𝐹𝐹 + 0.248% and 

𝛼𝐹𝐹 +0.212%, respectively, where 𝛼𝐹𝐹 is the Fama-French alpha.   

                                                 
1 Chrétien and Kammoun (2015) investigate the finite sample properties of SDF alphas estimated with a 

similar system of moments and find that inferences are generally robust to finite sample issues. They also 

show that t-statistics for their alphas are similar when using no lag or four lags. The choice of two lags is 

meant to control for the small but significant serial correlation in the returns of some funds (that might invest 

in thinly traded assets).  
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In section 4.5.3, we use these results to fix the value of 𝛼̅𝑠. Specifically, we estimate 

the Fama-French alpha for each style portfolio under consideration and add the previously 

mentioned mean and median bound estimates to compute realistic values of alphas for 

favorable clienteles. Based on the range of values obtained, we then select an economically 

relevant value for 𝛼̅𝑠. Although this value represents our basic choice, we also empirically 

examine the effects on the results of other sensible values in section 4.6.4.  

This method for estimating 𝑣𝑠 differs from the method used by Cochrane and Saá-

Requejo (2000) and Chrétien and Kammoun (2015). These papers estimate 𝑣𝑠 by exploiting 

the no-good-deal restriction that the solution for the style clientele SDF must meet: 

𝐸[𝑚̅𝑠𝑡
2 ] =  

(1+ℎ̅2)

𝑅𝐹
2 . They rely on exogenous values for the maximum Sharpe ratio ℎ̅, selected 

with guidance from the literature, and the risk-free rate 𝑅𝐹. Chrétien and Kammoun (2015) 

find that their alpha estimates are relatively sensitive to the choice of ℎ̅, although their 

conclusions hold for all reasonable values investigated. The estimation method in this paper 

avoids the specification of a maximum Sharpe ratio and instead uses available evidence on 

performance disagreement to choose a relevant alpha for clienteles favorable to a style.  

The third important methodological choice is the selection of passive portfolios. 

These portfolios are central to 𝑚𝐿𝑂𝑃, the part of 𝑚̅𝑠 common to all style clienteles. In our 

setup, no investor disagrees on their value. We choose a risk-free asset and ten industry 

portfolios as passive portfolios and details on the specific return series are provided in the 

data section. The inclusion of the risk-free asset controls for cash positions in equity funds 

and follows the recommendation of Dahlquist and Söderland (1999) to fix the mean of the 

SDFs to a reasonable value. Industry portfolios are widely used as basis assets in empirical 

asset pricing and performance evaluation, and categorization by industry is a common 

practice for mutual fund investors and researchers. For the purpose of this study, selecting 

industry portfolios instead of size and value Fama-French portfolios also provides a crucial 

benefit: it facilitates the identification of style clientele SDFs that, because they generate 

disagreement on the value of the style portfolios, are more likely to meaningfully represent 

different style clienteles. It is thus useful to exclude portfolios formed on criteria related to 
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the investigated styles from the set of passive portfolios to avoid obtaining SDFs that lead 

to no disagreement on them.  

Of course, other sets of passive portfolios could be relevant. Chrétien and 

Kammoun (2015) examine the sensitivity of their upper performance bound results to three 

sets of passive portfolios and find that their results are robust. Ferson and Lin (2014) also 

find that their results on investor disagreement are robust to changes of benchmark returns. 

These findings suggest that our results on disagreement between style clienteles should not 

be qualitatively affected by the choice of passive portfolios.  

4.3.3 Cross-Sectional Performance Statistics 

We summarize the empirical results by using numerous cross-sectional statistics. To 

examine the distribution of the alpha estimates for each style-clientele-specific performance 

measure, we show the mean, standard deviation and selected percentiles of the distributions 

of the estimated alphas and their corresponding t-statistics, computed as 𝑡 = 𝛼̂ 𝜎̂𝛼̂⁄ , where 𝛼̂ 

is the estimated alpha and 𝜎̂𝛼̂ is its Newey-West standard error. We also provide t-statistics 

to test for the hypothesis that the cross-sectional mean of the estimated alphas is equal to 

zero. This test assumes that the distribution of the alphas across funds is multivariate 

normal with a mean of zero, a standard deviation equal to the observed cross-sectional 

standard deviation, and a correlation between any two alphas of 0.044. This value 

corresponds to the cross-sectional dependence in performance among equity funds, 

adjusted for data overlap, documented in Barras, Scaillet and Wermers (2010, p. 193) and 

Ferson and Chen (2015, appendix, p. 62). Finally, we present the proportions of estimated 

alphas that are positive and negative.   

4.4 Data  

4.4.1 Mutual Fund Returns 

Our fund data consist of monthly returns on actively-managed open-ended U.S. equity 

mutual funds from January 1998 to December 2012. The data source is the CRSP Survivor-

Bias Free Mutual Fund US Database and our starting date corresponds to the date of first 

availability of Lipper objectives codes, which are central to the style classification approach 
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introduced in section 4.5. Following Kacperczyk, Sialm and Zheng (2008), we exclude 

bond funds, balanced funds, money market funds, international funds, funds that are not 

strongly invested in common stocks, index funds and funds not opened to investors.2  

Our sample selection mitigates numerous mutual fund database biases documented 

in the literature. Survivorship bias is treated in the CRSP database. Selection bias does not 

matter for our study period, as Elton, Gruber and Blake (2001) and Fama and French 

(2010) show its presence only before 1984. To deal with back-fill and incubation biases, we 

follow Elton, Gruber and Blake (2001), Kacperczyk, Sialm and Zheng (2008) and Evans 

(2010). We eliminate observations before the organization date of the funds, funds with no 

reported organization date and funds without a name, since they tend to correspond to 

incubated funds. We also exclude funds with total net assets inferior to $15 million in the 

first year of entering the database.  

As a last sampling choice, following Barras, Scaillet and Wermers (2010) and 

others, we impose a minimum fund return requirement of 60 months. While this screen 

introduces a weak survivorship bias, it is useful to obtain reliable statistical estimates with 

GMM. Barras, Scaillet and Wermers (2010) and Chrétien and Kammoun (2015) find that 

their performance results are similar when using a 36-month requirement instead of a 60-

month requirement. We obtain a final sample of 2530 actively-managed open-ended U.S. 

equity mutual funds.  

4.4.2 Passive Portfolio Returns 

The passive portfolio returns are the monthly returns on the one-month U.S. Treasury bills 

(taken from CRSP) and ten industry portfolios (taken from Kenneth R. French’s website). 

The industries are consumer nondurables (NoDur), consumer durables (Durbl), 

manufacturing (Manuf), energy (Enrgy), high technology (HiTec), telecommunication 

(Telcm), shops (Shops), healthcare (Hlth), utilities (Utils) and other sectors (Others).  

                                                 
2 Specifically, we identify US equity funds by policy codes CS and Lipper objective codes EIEI, EMN, 

LCCE, LCGE, LCVE, MATC, MATD, MATH, MCCE, MCGE, MCVE, MLCE, MLGE, MLVE, SCCE, 

SCGE or SCVE, and keep the funds only if they hold between 80% and 105% in common stocks. We exclude 

index funds identified by the Lipper objective codes SP and SPSP or with a name that includes the word 

“index”, and funds not opened to investors by consulting the variable “open to investors”.  
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4.4.3 Summary Statistics 

Table 4.1 presents summary statistics for the monthly returns of the mutual funds (panel A) 

and passive portfolios (panel B). Panel A also includes summary statistics for the Fama-

French SDF alphas with their corresponding t-statistics.3 In panel A, the average mutual 

fund return is 0.485% with a standard deviation of 0.309%. The monthly Sharpe ratios have 

a mean of 0.045 and a standard deviation of 0.055, with a range from -0.306 to 0.232. The 

Fama-French alpha estimates have a mean of -0.064% (t-stat. = -1.16) and a standard 

deviation of 0.267%. Approximately 60% of funds have negative performance values. At 

the 5% level, approximately 10% (2%) of funds have significantly negative (positive) alpha 

estimates. In panel B, industry portfolios have mean returns from 0.356% to 0.999% and 

standard deviations from 3.816% to 8.233%.  

4.5 Style Classification 

This section introduces a new method to better exploit available style classification data in 

the CRSP Survivor-Bias-Free US Mutual Fund Database. It also shows that the resulting 

style classifications and style portfolios, defined by size and value sorts, are relevant 

choices toward identifying meaningful clienteles in mutual funds.  

For the purpose of this study, a good style classification method should meet two 

objectives. First, it should be based on publicly and easily available information that 

clienteles could presumably consult to form their investment decisions. This objective leads 

us to avoid using the statistical methods proposed by Sharpe (1992), Brown and 

Goetzmann (1997) and others, to instead rely on existing classifications from industry 

providers like Lipper and Morningstar. Second, the classification should be based on styles 

commonly accepted by mutual fund investors. The high impact research of Fama and 

French (1992, 1993) has established the importance of size and value in the cross-section of 

                                                 
3 The Fama-French SDF is a linear function of the market, size (SMB) and value (HML) factors available on 

Kenneth R. French’s website. For each mutual fund, we estimate jointly the parameters of the Fama-French 

SDF and the alpha by using GMM with a just identified system. Specifically, we estimate the four parameters 

of the Fama-French SDF by requiring the SDF to correctly price the one-month Treasury bill returns and the 

three Fama-French factors, and the alpha by using a moment similar to equation (19), but with the Fama-

French SDF replacing the style clientele SDF.  
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equity returns. Since these seminal contributions, size (small-cap versus large-cap) and 

value (value versus growth) investment styles have become dominant in industry practices. 

Over the last 20 years, many equity funds have advertised themselves according to their 

size and value focuses, oftentimes starting with their names. They cater to and attract size 

and value investors, who can rely on classification tools like the style box popularized by 

Morningstar and illustrated in figure 1. To reach our style classification goals, the method 

detailed in the rest of this section thus uses existing industry classifications to split funds 

into size and value style categories.  

4.5.1 Style Classification Data from the CRSP Mutual Fund Database 

The CRSP Survivor-Bias Free Mutual Fund US Database provides style codes from three 

sources: Wiesenberger, Strategic Insight and Lipper.4 Each source is only available for a 

part of the CRSP sample period: from 1962 to 1993 for Wiesenberger, from 1993 to 1998 

for Strategic Insight and since 1998 for Lipper. This paper focuses exclusively on the 

period with Lipper data for two main reasons. First, Lipper codes cover most of the period 

during which size and value investment styles are prevalent in the industry. The Lipper 

period is likely the most relevant period to identify size and value clienteles. Second, 

Lipper codes facilitate the classification of equity funds into size and value styles because 

they are named according to these styles. In particular, they include large-cap growth funds 

(code LCGE), small-cap growth funds (code SCGE), large-cap value funds (code LCVE) 

and small-cap value funds (code SCVE). Hence, focusing on the Lipper period allows us to 

avoid the ad hoc attribution of Wiesenberger and Strategic Insight codes into the style 

categories considered in this paper. For example, Pástor and Stambaugh (2002) use all three 

sources of codes but subjectively assign various codes to their seven broad investment 

objectives.5 Lipper, a Thomson Reuters company, is also a global leader in supplying 

mutual fund information and thus a source regularly consulted by fund clienteles.6  

                                                 
4 Morningstar is another widely-used source for fund classification but their codes are not available in the 

CRSP mutual fund database.  
5 In an attempt to extend our sample period to 1984, we examine a style classification based on the Lipper, 

Wiesenberger and Strategic Insight codes, prioritized in that order. We find that the codes from the latter two 

sources are not useful because of the difficulty to assign them to our categories. In particular, they do not 
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 An important issue arising from Lipper codes in the CRSP database is that, although 

a unique classification code is typically attributed to a fund for a given period (which can 

be a month up to its full sample period), it can frequently change through time or be 

missing. Panel A of table 4.2 reports statistics to assess the stability and quality of the 

Lipper classification codes available for the 2530 equity mutual funds in our sample. It 

provides the mean, standard deviation (StdDev) and selected percentiles of the distributions 

of the numbers of code changes per fund (Nb Changes), the numbers of different codes per 

fund (Nb Styles), the maximum proportions of monthly observations that a fund has the 

same code (% Max) and the proportions of monthly observations that a fund presents a 

missing code (% Missing).  

 The results show that frequent changes in codes are a bigger issue than missing 

codes. On average, funds have 3.77 code changes and 3.19 different codes from 1998 to 

2012. Less than 1% of the funds have no code change. But more than 10% of the funds 

have at least six code changes and four different codes. One fund even experiences 11 

different codes. Although code changes are frequent, many funds keep the same code for a 

large fraction of their observations. On average, funds spend 67.46% of their sample 

observations with the same code and one fourth of the funds have the same code for at least 

82% of their observations. The fraction of funds with less than half (a quarter) of their 

observations with the same code is approximately equal to 20% (0.5%). Finally, the 

proportions of months with missing codes average 12.83%. Only 1% of the funds have no 

missing code, but less than 5% of the funds have more than 25.75% of missing codes. Our 

style classification method accounts for both code changes and missing codes.  

4.5.2 Style Classification Method and Results 

This section describes the style classification method developed in this paper and presents 

the classification results for the mutual funds. Figure 1 presents a mutual fund style box 

                                                                                                                                                     

identify more large-cap value funds and small-cap value funds, and only convincingly identify 20 new small-

cap growth funds.  
6 Their website mentions that: “Lipper's benchmarking and classifications are widely recognized as the 

industry standard by asset managers, fund companies and financial intermediaries. Our reliable fund data, 

fund awards designations and ratings information provide valued insight to advisors, media and individual 

investors.”   
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that illustrates the classification. The method proceeds in five steps. First, we start by 

identifying all funds with at least one of the four Lipper codes that jointly consider the size 

and value styles (i.e., Lipper codes LCGE, SCGE, LCVE and SCVE). Second, to deal with 

code changes and missing codes, we compute, for each identified fund, the proportion of 

monthly return observations associated with each code attached to the fund. One minus the 

sum of these “Lipper code proportions” give the fraction of observations with a missing 

code.  

Third, if its corresponding Lipper code proportion is above a given threshold, we 

assign a fund to one of the following four specialized styles: large-cap growth (LCG), 

small-cap growth (SCG), large-cap value (LCV) and small-cap value (SCV). For example, 

if we select a threshold of 50%, then a fund is classified as LCV only if its Lipper code is 

LCVE for 50% of its return observations. This “threshold for style inclusion” ensures that 

the Lipper code information is sufficiently reliable for the fund to be categorized, i.e. a fund 

with different or missing codes for a significant fraction of its sample period is not assigned 

to a style. As LCG, SCG, LCV and SCV funds are in the corners of the style box in figure 

1, we call them  “corner” funds for brevity.  

Fourth, we form four broader style categories by combining corner funds with a 

common style. Hence, we assign the Small style to SCV and SCG funds, the Large style to 

LCV and LCG funds, the Value style to SCV and LCV funds and the Growth style to SCG 

and LCG funds. We refer to Small, Large, Value and Growth funds as “SLVG” funds for 

brevity. Fifth, we assign either the Mixed style or the Other style to funds not categorized 

as corner funds. The Mixed style includes funds that do not meet the threshold for style 

inclusion defined previously or are assigned to the Lipper codes associated with the 

Medium row or Blend column of the style box in figure 1.7 The Other style includes funds 

with a style that does not fit into the style box.8  

                                                 
7 Specifically, these Lipper codes are EIEI, LCCE, MCCE, MCGE, MCVE, MLCE, MLGE, MLVE and 

SCCE.  
8 The Other funds have Lipper codes EMN, MATC, MATD and MATH.  
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The previous five steps result in a total of ten style categories: four corner styles 

(LCG, SCG, LCV and SCV), four SLVG styles (Small, Large, Value and Growth), the 

Mixed style and the Other style. Panel B of table 4.2 reports the number of funds classified 

into each style for three values of the threshold for style inclusion: 25%, 50% and 75%.9 

Intuitively, the threshold determines the “style purity” of the corner funds. When its value 

is 75%, the corner fund numbers are small and vary from 8 small-cap value funds to 42 

small-cap growth funds. Most funds end up in the Mixed style because they do not have the 

required Lipper codes for 75% of their observations. When the threshold is 50%, the corner 

fund numbers increase considerably and include 53 small-cap value funds, 70 large-cap 

value funds, 135 small-cap growth funds and 168 large-cap growth funds. The SLVG funds 

are divided into 188 small-cap funds, 238 large-cap funds, 123 value funds and 303 growth 

funds. When the threshold is 25%, the fund numbers are above 100 for all corner styles, 

above 290 for all SLVG styles and equal to 1532 for the Mixed style. There are constantly 

exactly 205 funds throughout the sample in the Other style.  

4.5.3 Style Portfolios and Upper Performance Bound Choice 

This section examines the results for portfolios of funds classified into the ten previously 

identified style categories. The style portfolios constructed from the corner and SLVG 

funds are particularly important because they are used to extract the style clientele SDFs 

with the approach discussed in section 4.2.2. To make these portfolios as representative of 

their style as possible, we select a threshold for style inclusion of 50% in the fund 

classification method. This threshold ensures that the funds included in the portfolios are 

assigned to the correct style for a majority of their monthly observations and are in 

sufficient numbers to provide adequate portfolio diversification (i.e., low fund-specific 

risk).  

Table 4.3 presents summary statistics, including Fama-French SDF alphas and their 

t-statistics, for the monthly returns on two types of portfolios: net asset value-weighted 

                                                 
9 When the threshold is 25%, it is possible for a fund to end up in more than one corner style. To eliminate 

this possibility, we assign funds to the LCG, SCG, LCV and SCV styles in this predetermined order and 

remove them from consideration once assigned. As a robustness check, we verify the importance of the 

ordering for the style classification and find it has little effect as only one fund switches style.   
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(NAV-weighted) portfolios (panel A) and equally-weighted (EW) portfolios (panel B). The 

NAV-weighted portfolios in panel A have mean returns from 0.413% to 0.821% and 

standard deviations from 4.576% to 7.150%. Their Sharpe ratios and Fama-French alphas 

vary from 0.044 to 0.110 and from -0.084% to 0.193%, respectively. The equally-weighted 

portfolios in panel B have mean returns from 0.418% to 0.734% and standard deviations 

from 4.315% to 7.018%. Their Sharpe ratios and Fama-French alphas vary from 0.046 to 

0.105 and from -0.098% to 0.146%, respectively. No Fama-French alpha is statistically 

significant at the 5% level. Overall, the portfolios of small-cap funds, value funds and other 

funds tend to earn more.  

Two findings implied by table 4.3 are useful for the rest of our analysis. First, the 

results in panels A and B are relatively similar and suggest that the type of weights for the 

style portfolios is not a material choice. Based on this assessment, we focus on NAV-

weighted portfolios, which better account for the clientele invested amounts, to identify the 

SDFs used in our clientele-specific performance evaluation. In unreported results, we 

confirm that the SDFs identified from equally-weighted portfolios are similar to those 

identified from NAV-weighted portfolios.  

Second, as discussed in section 4.3.2, the Fama-French alphas are useful to select an 

appropriate value for the upper performance bound, 𝛼̅𝑠, needed to estimate the 

disagreement parameter of the SDFs identified from corner and SLVG style portfolios. The 

results in table 4.3 combined with the mean (0.248%) and median (0.212%) bound values 

reported by Ferson and Lin (2014) allow us to make a selection. Specifically, we find that 

the clienteles most favorable to the corner and SLVG NAV-weighted style portfolios 

should expect mean alphas from 0.164% to 0.299% and median alphas from 0.128% to 

0.263%. Based on these ranges, we opt for 𝛼̅𝑠 = 0.15% as a realistic yet conservative value 

for the upper performance bound of the style portfolios. In section 4.6.4, we examine the 

sensitivity of our results to this choice by considering values of 𝛼̅𝑠 = 0% and 𝛼̅𝑠 = 0.3%. 

These values respectively assume that the style clienteles expect either no performance or a 

high performance from their preferred style portfolios.  
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4.6 Empirical Results 

4.6.1 Style Clientele Stochastic Discount Factors 

We begin our discussion of the empirical results by examining the empirical style clientele 

SDFs identified from the NAV-weighted style portfolios and an upper performance bound 

of 𝛼̅𝑠 = 0.15%. As discussed in section 4.2.2, the style clientele SDF 𝑚̅𝑠 should represent 

marginal preferences of clienteles favorable to a style. Our style classification method 

results in eight styles associated with clienteles. The four SLVG styles (Small, Large, 

Value, Growth) are general and should attract broad clienteles who consider either the size 

or value focus of equity funds. Accordingly, we refer to the SDFs identified from SLVG 

style portfolios as one-style clientele (1-SC) SDFs. The four corner styles (LCG, SCG, 

LCV, SCV) are more specific and should attract specialized clienteles who jointly consider 

the size and value focuses of equity funds. Accordingly, we refer to the SDFs extracted 

from corner style portfolios as two-style clientele (2-SC) SDFs.  

Table 4.4 reports various statistics on the style clientele SDFs. Panel A presents the 

mean, standard deviation (StdDev) and selected percentiles of the SDFs. As expected, 

given that a risk-free asset is included in the passive portfolios, all SDFs have the same 

mean. The standard deviations are from 0.269% to 0.531% for the one-style clientele SDFs 

and from 0.265% to 0.492% for the two-style clientele SDFs. The lowest values are for the 

Small and SCV clienteles, and the highest values are for the Large and LCV clienteles.  

The SDF standard deviations for value versus growth clienteles are closer.  

Panel B looks at the correlations between the style clientele SDFs. The results 

suggest that the broad clienteles identified from the SLVG style portfolios and the 

specialized clienteles identified from the corner style portfolios are generally different. For 

the one-style clientele SDFs, the correlations are particularly low between the Large and 

Value clienteles (Corr. = 0.161), the Value and Growth clienteles (Corr. = 0.395) and the 

Small and Large clienteles (Corr. = 0.510). On the other hand, the Large and Growth 

clienteles appear the most related (Corr. = 0.869). For the two-style clientele SDFs, low 

correlations are found between the LCG and LCV clienteles (Corr. = 0.012), the SCG and 

LCV clienteles (Corr. = 0.395) and the LCV and SCV clienteles (Corr. = 0.534).  
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The only case where the style portfolios appear to fail to identify economically 

different clienteles concerns the SCG and SCV SDFs (Corr. = 0.967). Furthermore, these 

SDFs are almost perfectly correlated with the Small SDFs, suggesting that it is difficult to 

distinguish between favorable preferences for value versus growth among small-cap fund 

investors. In fact, given the low volatility and similar statistics of these three SDFs in panel 

A, they appear closely related to 𝑚𝐿𝑂𝑃, the common part to all style clienteles SDFs, 

suggesting that there is little disagreement between small-cap mutual fund investors.  

As discussed by Hansen and Jagannathan (1991), in rational asset pricing theory, an 

increase in investor risk aversion typically leads to a more volatile SDF. Our results thus 

suggest that the clienteles with favorable preferences for large-cap funds tend to be more 

risk averse than the ones attracted to small-cap funds, and that there is little risk aversion 

difference between the value and growth clienteles. However, in behavioral asset pricing 

theory, a more volatile SDF can also be the result of behavioral preferences that account for 

psychological biases and sentiment (Shefrin, 2008, 2009). The higher variability and 

negative minimum values (which do not preclude arbitrage) for the Large, Growth, LCV 

and LCG style clientele SDFs are consistent with the evidence of Shefrin and Statman 

(1995, 2003) and Shefrin (2015) that style investors misjudge the risk-return tradeoff of 

size and value investments by expecting too high returns (being optimistic) for large-cap 

and growth stocks and expecting too low returns (being pessimistic) for small-cap and 

value stocks. 

To better understand the rational and behavioral economic properties of the style 

clientele SDFs, next we empirically project the SDFs on the (net) market portfolio return 

(𝑟𝑚𝑡) and its squared and cubic values:  

(20) 𝑚̅𝑠𝑡 = 𝑎0 + 𝑎1𝑟𝑚𝑡 + 𝑎2𝑟𝑚𝑡
2 + 𝑎3𝑟𝑚𝑡

3 + 𝑒𝑡, 

This regression is inspired by the analyses of Harvey and Siddique (2000), Dittmar (2002) 

and Guidolin and Timmermann (2008), who examine a decomposition of the SDF into a 

polynomial function of the market return. In particular, Dittmar (2002) starts with the 

following Taylor series expansion of the SDF:   
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(21) 𝑚 = 𝑘0 + 𝑘1

𝑈′′

𝑈′
𝑅𝑊 + 𝑘2

𝑈′′′

𝑈′
𝑅𝑊

2 + ⋯, 

where U is the investor's utility function and 𝑅𝑊 is the return on aggregate wealth. Then he 

uses the preference theory analyses of Arditti (1967) and Kimball (1993) to sign the first 

three coefficients of the expansion. Specifically, he shows that positive marginal utility, 

risk aversion, decreasing absolute risk aversion and decreasing absolute prudence imply 

that 𝑎1 < 0, 𝑎2 > 0 and 𝑎3 < 0 in rational asset pricing theory. These signs also indicate 

preferences against risk, for skewness and against kurtosis, respectively.10  

Although Dittmar (2002) documents evidence in favor of his cubic SDF, he also 

finds it is not monotone decreasing with the market return, inconsistent with an implication 

of decreasing absolute risk aversion. In different contexts, Aït-Sahalia and Lo (2000) and 

Rosenberg and Engle (2002) also obtain SDFs that are not monotonically decreasing. 

Motivated by these findings, Shefrin (2008, 2009) proposes an alternative interpretation of 

equation (20) from a behavioral asset pricing perspective. He argues that the SDF can be 

seen as the sum of a component relating to fundamentals (i.e., the rational SDF) and a 

component relating to sentiment (i.e., the behavioral SDF). In equation (20), the rational 

component can be thought as the CAPM SDF, 𝑚𝐶𝐴𝑃𝑀𝑡 = 𝑎0 + 𝑎1𝑟𝑚𝑡, and the behavioral 

component captures the rest, 𝑚̅𝑠𝑡 − 𝑚𝐶𝐴𝑃𝑀𝑡. This interpretation provides a role for 

behavioral preferences in the SDFs of fund investors, consistent with the results of Lee, 

Shleifer and Thaler (1991), Neal and Wheatley (1998), Goetzmann and Massa (2003), 

Indro (2004), Bailey, Kumar and Ng (2011) and Blackburn, Goetzmann and Ukhov (2013) 

that behavioral biases and sentiment are factors in the fund industry.  

                                                 
10 Other rational approaches based on nonlinear decompositions exist to study the economic properties of 

equity investor SDFs with unknown utility functions. For example, Bansal and Viswanathan (1993) advocate 

a nonlinear function of the market return and interest rate for the SDF. Bansal, Hsieh and Viswanathan (1993) 

let the SDF depends on the market return, term spread and interest rate. Chapman (1997) uses functions of 

aggregate consumption and its lag as state variables in his nonlinear SDF. Rosenberg and Engle (2002) 

propose an empirical SDF based on a polynomial expansion around the market return that allows time 

variation in risk aversion. Chabi-Yo (2008) argues for a SDF as a function of payoffs, squared payoffs, 

skewness and kurtosis of the asset returns.  
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Figure 2 illustrates the empirical results of the projection in equation (20) for the 

one-style clientele SDFs (figure 2a) and two-style clientele SDFs (figure 2b). Consistent 

with a behavioral component, the figure shows that the SDFs are not monotonically 

decreasing, except perhaps for the Value and LCV clienteles. The SDFs exhibit different 

preferences, especially when market returns are extreme. When the monthly returns are 

between -10% and 6% (approximately one to two standard deviations from their mean), the 

style clientele SDFs are generally similar and show a negative slope consistent with rational 

asset pricing theory. This segment captures the rational SDF component and suggests that 

clienteles have similar risk aversion in “normal” market states.  

However, when the market states are extreme, the SDFs significantly deviate from 

each other and the results are more consistent with a role for irrationality and market 

sentiment (e.g., Lakonishok, Shleifer and Vishny, 1994, Baker and Wurgler, 2006, 2007). 

In particular, figure 1a shows that the Growth and Large SDFs are increasing with returns 

in extreme market states. In difficult (easy) times, when market sentiment is low (high), the 

Growth and Large clienteles have relatively low (high) SDFs and are thus less (more) 

attracted that they rationally should be to their style funds, an interpretation also valid for 

the LCG clienteles in figure 1b. In contrast, the Value and (to a lesser extent) Small 

clienteles have relatively high (low) SDFs in difficult (easy) times, when market sentiment 

is low (high), and are thus more (less) attracted that they rationally should be to their style 

funds. The same interpretation holds for the LCV clienteles.  

Overall, figure 2 indicates that the Growth and Large SDFs include a significant 

behavioral component because they appear to underweight the probabilities of extreme 

negative events and overweight the probabilities of extreme positive events, leading them 

to follow market sentiment. Hence, the clienteles of growth and large-cap funds tend to be 

optimists and trend followers. The Value and Small SDFs conform more closely to rational 

asset pricing theory, but their associated clienteles still show a tendency for pessimism and 

being contrarian, especially for value fund investors. Our style clientele SDFs thus have 

features that are consistent with the results of Shefrin and Statman (1995, 2003), 

Blackburn, Goetzmann and Ukhov (2013) and Shefrin (2015), who study the judgments, 

sentiment sensitivity and trading behavior of style investors. Figure 2 also supports the 
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findings from table 4.4 that the identified clienteles are generally different (except for the 

SCG and SCV clienteles) and thus should generate meaningful disagreement in 

performance evaluation.  

4.6.2 Style-Clientele-Specific Performance Evaluation Results 

This section examines clientele-specific performance evaluation using the style clientele 

SDFs. As discussed in section 4.2.3, the evaluation necessitates that we distinguish between 

individual mutual funds with and without styles associated to clienteles. In our 

classification, the funds assigned to styles associated with clienteles include the SLVG 

funds and the corner funds. Their performance measurement simply uses their associated 

style clientele SDFs, i.e., the one-style clientele SDFs for SLVG funds and the two-style 

clientele SDFs for corner funds. The funds classified in the Mixed and Other categories 

represent the funds not assigned to styles associated with clienteles. As they cannot be 

assigned any unique style clientele SDF, their performance measurement is done for all 

clienteles.  

To obtain a sufficiently large cross-section of funds in each style category, we select 

a threshold for style inclusion of 25% in the fund classification method. Intuitively, we thus 

stipulate that a fund assigned to a given style for at least 25% of its return observations 

should be of interest to the clienteles represented by its associated style clientele SDF. 

Given this threshold, the number of funds in each cross-section is given in the row under 

25% in panel B of table 4.2 and vary from 102 SCV funds to 1532 Mixed funds.  

Tables 4.5 to 4.10 present the style-clientele specific performance evaluation results. 

Panel A of each table provides the mean, standard deviation (StdDev) and selected 

percentiles of the distributions of the estimated SDF alphas (columns under Performance) 

and their corresponding t-statistics (columns under t-statistics). It also reports the t-statistics 

(t-stat) on the significance of the cross-sectional mean of estimated alphas using the test 

described in section 4.3.3, which accounts for the dependence in performance between 

funds. Panel B of each table gives the proportions of estimated alphas that are positive 

(%𝛼𝑀𝐹,𝑠 > 0) and negative (%𝛼𝑀𝐹,𝑠 < 0). 
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 Table 4.5 examines the results for the broader clienteles who consider either the size 

or value focus of equity funds. On average, small-cap, large-cap and value funds provide a 

relatively neutral performance to their respective clienteles, while growth funds provide a 

significantly positive performance to growth clienteles. The mean alphas are equal to 

0.000% (t-stat. = 0.00) for small-cap funds, 0.004% (t-stat. = 0.06) for large-cap funds, 

0.058% (t-stat. = 1.00) for value funds and 0.212% (t-stat. = 2.43) for growth funds. The 

percentile statistics confirm that the alpha distributions are centered at approximately zero 

for small-cap, large-cap and value funds, although the t-statistic distributions show more 

significantly positive than negative alphas for large-cap and value funds. For growth funds, 

the alpha distribution is centered at a positive value and the proportions in panel B show 

that the fraction of positive alphas (65.34%) is almost twice the fraction of negative alphas 

(34.66%).  

Table 4.6 provide the results for the more specialized clienteles who jointly consider 

the size and value focuses of funds. The alphas have means of  0.076% (t-stat. = 1.31) for 

large-cap growth funds, 0.066% (t-stat. = 0.97) for small-cap growth funds, 0.101% (t-stat. 

= 2.24) for large-cap value funds and 0.038% (t-stat. = 0.93) for small-cap value funds. 

Although the mean alphas are not significant for the funds assigned to three of the four 

styles, the percentiles of the distributions in panel A and the proportions in panel B indicate 

more positive than negative alphas for all four styles. Overall, tables 4.5 and 4.6 suggest 

that funds assigned to styles associated with clienteles do not underperform for their 

clienteles. The performance of mutual funds could be more positive than existing evidence 

shows if the evaluation considers the relevant clienteles.  

Tables 4.7 and 4.8 give the results for the 1532 Mixed mutual funds using the one-

style clientele SDFs and the two-style clientele SDFs, respectively. These funds tend to fall 

in the Medium or Blend category of the mutual fund style box and so could presumably be 

partly attractive for the style clienteles we investigate. In table 4.7, the mean alphas vary 

from -0.149% (t-stat. = -1.98) to 0.020% (t-stat. = 0.24) and the proportions of positive 

alphas vary from 28.20% to 45.89%. In table 4.8, the mean alphas vary from -0.312% (t-

stat. = -3.02) to -0.056% (t-stat. = -0.77) and the proportions of positive alphas vary from 

23.24% to 36.75%. The performance of Mixed funds thus tends to be negative.  
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Tables 4.9 and 4.10 give the results for the 205 Other mutual funds using the one-

style clientele SDFs and the two-style clientele SDFs, respectively. These funds are 

difficult to categorize because they do not fit into the mutual fund style box. In table 4.9, 

the mean alphas vary from 0.022% (t-stat. = 0.37) to 0.200% (t-stat. = 3.09) and the 

proportions of positive alphas vary from 45.85% to 76.59%. In table 4.10, the mean alphas 

vary from -0.067% (t-stat. = -0.90) to 0.119% (t-stat. = 2.00) and the proportions of positive 

alphas vary from 44.39% to 63.90%. The performance of Other funds is thus generally 

more positive.  

Overall, tables 4.7 to 4.10 find that funds not assigned to styles associated with 

clienteles have performance sensitive to the SDFs used for evaluation. The mean 

performance values for Large, Growth and LCG clienteles are neutral for Mixed funds and 

significantly positive for Other funds. The mean values for Small, Value and LCV 

clienteles are significantly negative for Mixed funds and neutral for Other funds. As 

discussed in the previous section, the clienteles of large-cap and growth funds tend to be 

optimistic trend followers and the clienteles of small-cap and value funds tend to be 

pessimistic contrarians. Our results for Mixed and Other funds thus suggest that the 

behavioral features of the investor SDFs are important determinants of clientele-specific 

performance evaluation.  

4.6.3 Value Added with Style-Clientele-Specific Performance Measures 

This section studies the value added of the actively-managed fund industry from the 

perspective of the style clienteles by combining the categorized funds into a full-sample 

cross-section. In the style-clientele-specific evaluation of the previous section, each 

individual mutual fund is given multiple performance values. Each corner fund is evaluated 

with three SDFs, i.e., two one-style clientele SDFs and one two-style clientele SDF. For 

example, a large-cap growth fund is evaluated with the Large, Growth and LCG SDFs. 

Each Mixed or Other fund is evaluated with the eight style clientele SDFs. To obtain a full-

sample cross-sectional distribution of the alphas where each fund is only included once, we 

thus need to select one alpha per fund.  
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Instead of subjectively picking one value, this section examines many cross-

sectional distributions by considering either the minimum or maximum alpha for each fund, 

thus providing a range of performance cross-sections accounting for various clienteles. 

Given the previous findings that alphas tend to vary with the behavioral features of the style 

clientele SDFs, the minimum (maximum) alpha distribution can be roughly interpreted as 

the mutual fund industry performance for investors who tend to be pessimistic contrarians 

(optimistic trend followers).  

 Table 4.11 presents the results for the minimum (Min) and maximum (Max) alpha 

distributions, with funds evaluated either with the one-style clientele SDFs (under 1-SC 

alphas) or the two-style clientele SDFs (under 2-SC alphas). Figure 3 illustrates these 

distributions. As in tables 4.5 to 4.10, panel A provides statistics on the distributions of the 

estimated SDF alphas (columns under Performance) and their corresponding t-statistics 

(columns under t-statistics), including the t-statistics (t-stat) on the significance of the 

cross-sectional mean of estimated alphas. In panel B, instead of providing proportions of 

positive and negative alphas as in previous tables, we report the proportions of estimated 

alphas that are larger (%𝛼𝑀𝐹,𝑠 > 𝛼𝐹𝐹) and smaller (%𝛼𝑀𝐹,𝑠 < 𝛼𝐹𝐹) than the Fama-French 

estimated alphas (given in table 4.1), which allow us to compare the value added for style 

clienteles to the value added from a widely-used model.  

The results show that the sign of the value added by the fund industry is ambiguous 

and depends on the choice of measures. The minimum one-style and two-style clientele 

alpha estimates show a negative average performance of -0.182% (t-stat. = -2.71) and -

0.239% (t-stat. = -2.68), respectively, and are below the Fama-French alphas for more than 

70% of funds. In contrast, the maximum one-style and two-style clientele alpha estimates 

show a positive average performance of 0.174% (t-stat. = 2.29) and 0.074% (t-stat. = 1.21), 

respectively, and are above the Fama-French alphas for more than 75% of funds. The 

disagreement in alpha is well illustrated by the alpha distributions in figure 3. Overall, these 

findings suggest that the value added by the fund industry tend to be negative for investors 

with pessimistic-contrarian behavioral SDFs, but positive for those with optimistic-trend-

following behavioral SDFs.  
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4.6.4 Sensitivity of Value Added Results to Upper Performance Bound Choice 

Our empirical results have thus far relied on the style clientele SDFs identified with an 

upper performance bound for the style portfolios of 𝛼̅𝑠 = 0.15%. This section examines the 

sensitivity of our results to this choice by considering values of 𝛼̅𝑠 = 0% and 𝛼̅𝑠 = 0.3%. 

Compared to the value of 𝛼̅𝑠 = 0.15% which is consistent with the findings of Ferson and 

Lin (2014), these values respectively assume that the style clienteles expect either no 

performance or a relatively high performance from their preferred style portfolios.  

 Tables 4.12 and 4.13 reproduce the value added results of table 4.11 by using 𝛼̅𝑠 = 

0% and 𝛼̅𝑠 = 0.3%, respectively. The tables show that the investor disagreement observed 

from the difference between the minimum and maximum alphas increases with the upper 

performance bound. Furthermore, this increase is caused by movements in the maximum 

alpha distributions. Specifically, the results for the minimum alpha distributions are similar 

to those in table 4.11, including comparable negative mean alphas and high proportions of 

clientele alphas below the Fama-French alphas. In contrast, the results for the maximum 

alpha distributions are relatively neutral when 𝛼̅𝑠 = 0%, but more positive when 𝛼̅𝑠 = 0.3% 

than when 𝛼̅𝑠 = 0.15%. When 𝛼̅𝑠 = 0%, the maximum alpha estimates have insignificant 

means and are above the Fama-French alphas for only an average of 55% of funds. When 

𝛼̅𝑠 = 0.3%, the maximum alpha estimates have highly statistically significant means and are 

above the Fama-French alphas for 85% of funds. Overall, these results confirm that the sign 

of the value added by the fund industry is generally ambiguous and depends on the choice 

of clienteles. But they also show that it partly depends on the maximum performance 

expected by the clienteles most favorable to the style.  

4.7 Conclusion  

Mutual funds cater to and attract specific clienteles throughout their investment style. We 

propose clientele-specific performance measures based on the implied style preferences of 

mutual fund investors. The performance framework is based on a SDF alpha approach with 

investor disagreement, following Chrétien and Kammoun (2015). The identification of 

meaningful SDFs for style clienteles uses representative style portfolios and the findings of 

Ferson and Lin (2014) on investor disagreement. The style classification employs a new 
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method to better exploit existing objective code data from Lipper and to account for code 

changes and missing codes.  

Our empirical investigation uses a sample of 2530 U.S. equity mutual funds with 

monthly returns from 1998 to 2012. The economic properties of the SDFs for style 

clienteles indicate that the preferences implied by the SDFs have similar risk aversion but 

differ in their behavioral features. Value and small-cap SDFs show pessimism and 

contrarian behavior. Growth and large-cap SDFs show optimism and trend following 

behavior. The style-clientele-specific performance evaluation finds that funds assigned to 

equity styles have a neutral to positive performance when they are evaluated with their 

relevant clientele-specific measure. The performance of the other funds is sensitive to the 

clienteles and the behavioral features of the SDFs are important determinants of the 

evaluation. The value added by the mutual fund industry also depends on the choice of 

measures. Overall, we find that preferences and performance evaluations differ for size and 

value mutual fund clienteles. We provide supporting evidence for the conjecture of Ferson 

(2010) that clientele-specific measures based on meaningful investor clienteles might be 

necessary to properly evaluate mutual funds.  

We agree with Ferson (2010) and Ferson and Lin (2014) on their calls for more 

research on clientele effects in performance evaluation. Our clientele-specific performance 

approach can serve as a useful framework for developing measures to account for other 

clientele effects documented by the literature. Future research can also employ different 

techniques to more fully characterize the economic properties of preferences implied by the 

clientele SDFs. Finally, other strategies based on different restrictions or alternative 

incomplete market setups can be followed to identify economically meaningful clientele 

SDFs useful for clientele-specific measurement.  
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Table 4.1: Summary Statistics 

Table 4.1 presents summary statistics for the monthly data from January 1998 to December 2012. Panel A 

shows cross-sectional summary statistics (average (Mean), standard deviation (StdDev) and selected 

percentiles) on the distributions of the average (Mean), standard deviation (StdDev), minimum (Min), 

maximum (Max), Sharpe ratio (h) and Fama-French SDF Alphas with their corresponding t-statistics for the 

returns on 2530 actively-managed open-ended U.S. equity mutual funds. It also reports the t-statistics (t-stat) 

on the significance of the mean of estimated Fama-French SDF alphas (see test description in section 4.3.3). 

Panel B gives the average (Mean), standard deviation (StdDev), minimum (Min), maximum (Max) and 

Sharpe ratio (h) for the passive portfolio returns. The passive portfolios include ten industry portfolios 

(consumer nondurables (NoDur), consumer durables (Dur), manufacturing (Manuf), energy (Enrgy), high 

technology (HiTec), telecommunication (Telcm), shops (Shops), healthcare (Hlth), utilities (Utils), and other 

industries (Other)), and the risk-free asset (RF) based on the one-month Treasury bills. All statistics are in 

percentage except for the Sharpe ratios and the t-statistics. 

 Panel A: Mutual Fund Returns and Fama-French Alphas 

  Mutual Fund Returns Fama-French Alphas 

  Mean StdDev Min Max h 𝛼𝑀𝐹 t-statistics 

Mean 0.4848 5.6633 -19.1187 16.1357 0.0452 -0.0637 -0.3924 

StdDev 0.3091 1.6530 4.9232 7.5524 0.0547 0.2607 1.2285 

(t-stat)      (-1.161)  

Max 1.8164 17.6776 -2.1401 75.0000 0.2324 1.3163 4.1081 

99% 1.1755 10.5577 -5.2848 40.5801 0.1537 0.5577 2.2049 

95% 0.9323 8.5988 -12.7480 32.1314 0.1220 0.2798 1.5057 

90% 0.8391 7.6060 -14.2134 26.8592 0.1061 0.1988 1.1115 

75% 0.6623 6.3709 -16.2791 18.3857 0.0791 0.0698 0.4345 

Median 0.4897 5.3792 -18.6207 13.8677 0.0517 -0.0517 -0.3555 

25% 0.3410 4.7017 -21.7059 11.3099 0.0207 -0.1723 -1.1245 

10% 0.1223 4.1858 -24.6343 9.7340 -0.0264 -0.3199 -1.9346 

5% -0.0178 3.7186 -26.4187 8.8372 -0.0550 -0.4475 -2.5100 

1% -0.3862 1.6135 -35.9893 5.0661 -0.1179 -0.9014 -3.8027 

 Min -2.5734 0.9172 -59.0909 2.4218 -0.3063 -3.2906 -6.1673 

Panel B: Passive Portfolio Returns  

 
Mean StdDev Min Max h 

NoDur 0.6734 3.8159 -13.0900 10.9000 0.1226 

Durbl 0.5574 8.1845 -32.8900 42.9200 0.0431 

Manuf 0.7896 5.4291 -20.9400 17.7800 0.1077 

Enrgy 0.9989 6.1105 -17.1200 19.1300 0.1301 

HiTec 0.7310 8.2327 -26.1500 20.4600 0.0640 

Telcm 0.4103 5.9385 -15.5600 22.1200 0.0346 

Shops 0.7485 4.8399 -15.1600 13.3800 0.1122 

Hlth 0.6037 4.2342 -12.3600 12.0300 0.0944 

Utils 0.6949 4.4358 -12.6500 11.7600 0.1107 

Other 0.3556 5.7347 -21.2800 16.1100 0.0264 

RF 0.2047 0.1721 0.0000 0.5600 - 
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Table 4.2: Style Classification of Mutual Funds 

Table 4.2 presents summary statistics for the style classification of mutual funds. Panel A is based on the 

Lipper classification codes in the CRSP mutual fund database. It gives the average (Mean), standard deviation 

(StdDev) and selected percentiles of the numbers of code changes per fund (Nb Changes), the numbers of 

different codes per fund (Nb Styles), the maximum proportions of monthly observations that a fund has the 

same code (% Max) and the proportions of monthly observations that a fund presents a missing code (% 

Missing). Panel B reports the number of mutual funds classified into each style using the style classification 

method described in section 4.5.2 and three values of the threshold for style inclusion: 25%, 50% and 75%. 

The classification depends on whether the proportions of monthly return observations associated with the 

Lipper codes attached to the funds are above the given threshold for style inclusion. Funds are classified into 

ten styles: four corner styles (LCG, SCG, LCV and SCV), four SLVG styles (Small, Large, Value and 

Growth), the Mixed style and the Other style. The corner styles include large-cap growth funds (LCG), small-

cap growth funds (SCG), large-cap value funds (LCV), small-cap value funds (SCV). The SLVG styles 

include small-cap funds (Small), large-cap funds (Large), value funds (Value) and growth funds (Growth). 

The data cover the period January 1998-December 2012. 

Panel A: Lipper Classification Codes  

  Nb Changes Nb Styles  % Max % Missing  

Mean 3.77 3.19 67.46 12.83 

StdDev 2.01 1.00 17.12 6.09 

     Max 13 11 100.00 47.40 

99% 10 6 93.00 31.60 

95% 8 5 89.83 25.75 

90% 6 4 89.83 22.24 

75% 5 4 82.30 14.64 

Median 3 3 69.45 10.18 

25% 2 3 53.61 10.18 

10% 2 2 43.84 7.72 

5% 1 2 38.98 7.00 

1% 1 2 30.51 0.00 

 Min 0 1 19.08 0.00 

Panel B: Style Classification of Mutual Funds 

Style Classification 25% 50% 75% 

LCG 298 168 41 

SCG 204 135 42 

LCV 189 70 14 

SCV 102 53 8 

Small 306 188 50 

Large 487 238 55 

Value 291 123 22 

Growth 502 303 83 

Mixed 1532 1899 2220 

Other 205 205 205 
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Table 4.3: Summary Statistics for Mutual fund Style Portfolios 

Table 4.3 presents summary statistics for the monthly returns on net asset value-weighted (NAV-weighted) 

(panel A) and equally-weighted (EW) (panel B) style portfolios. The table shows the average (Mean), 

standard deviation (StdDev), minimum (Min), maximum (Max), Sharpe ratio (h) and Fama-French SDF 

alphas with their corresponding t-statistics of the portfolio returns. Using the style classification method 

described in section 4.5.2 and a 50% threshold for style inclusion, the funds are classified into ten styles: four 

corner styles (LCG, SCG, LCV and SCV), four SLVG styles (Small, Large, Value and Growth), the Mixed 

style and the Other style. The corner styles include large-cap growth funds (LCG), small-cap growth funds 

(SCG), large-cap value funds (LCV), small-cap value funds (SCV). The SLVG styles include small-cap funds 

(Small), large-cap funds (Large), value funds (Value) and growth funds (Growth). One NAV-weighted 

portfolio and one EW portfolio are then formed for each style. The data (see description in table 4.1) cover the 

period January 1998-December 2012. All statistics are in percentage except for the Sharpe ratios and the t-

statistics.   

Panel A : Returns and Fama-French Alphas for NAV-Weighted Portfolios 

  NAV-Weighted   Fama-French Alphas 

Style Classification Mean  StdDev Min  Max h 𝛼𝑠 t-statistics 

LCG 0.4482 5.4292 -16.8991 12.4339 0.0477 -0.0720 -0.9200 

SCG 0.7082 7.1505 -22.0506 27.0381 0.0707 -0.0830 -0.7800 

LCV 0.4128 4.6562 -16.9076 11.7733 0.0450 -0.0720 -0.9200 

SCV 0.8206 5.5741 -21.3388 17.7120 0.1084 0.0514 0.4200 

Small 0.7691 6.5758 -21.0640 23.3101 0.0851 -0.0350 -0.4000 

Large  0.4169 5.0808 -16.8712 11.7631 0.0437 -0.0840 -1.4700 

Value  0.5760 4.9469 -19.1288 14.1630 0.0745 -0.0080 -0.0900 

Growth  0.4933 5.6334 -17.9827 13.6074 0.0534 -0.0610 -0.8200 

Mixed 0.5450 4.8643 -18.0761 11.3832 0.0692 -0.0030 -0.0900 

Other  0.7079 4.5765 -18.6406 10.6618 0.1103 0.1927 1.9200 

Panel B : Returns and Fama-French Alphas for Equally-Weighted Portfolios 

  EW   Fama-French Alphas 

Style Classification Mean  StdDev Min  Max h 𝛼𝑠 t-statistics 

LCG 0.4412 5.3274 -16.9975 12.2806 0.0457 -0.0680 -0.8100 

SCG 0.6979 7.0176 -21.4409 24.1058 0.0690 -0.0980 -0.9800 

LCV 0.4179 4.5526 -16.4539 11.6782 0.0461 -0.0680 -0.8100 

SCV 0.7344 5.3197 -20.6288 16.1120 0.0975 0.0122 0.0900 

Small 0.7078 6.3206 -20.9842 17.8977 0.0781 -0.0680 -0.7800 

Large  0.4292 4.9289 -16.8034 11.6983 0.0464 -0.0710 -1.4500 

Value  0.5517 4.7368 -18.1392 12.8513 0.0718 -0.0340 -0.3400 

Growth  0.5566 5.9526 -18.9806 15.2024 0.0591 -0.0810 -1.1300 

Mixed 0.5165 4.9201 -18.0184 11.9546 0.0627 -0.0580 -1.1300 

Other  0.6548 4.3148 -18.9360 9.9330 0.1048 0.1463 1.4300 
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Table 4.4: Statistics for the Style Clientele Stochastic Discount Factors 

Table 4.4 shows statistics for one-style and two-style clientele stochastic discount factors 

(denoted 1-SC SDFs and 2-SC SDFs, respectively). The one-style clientele SDFs are 

estimated from NAV-weighted style portfolios of small-cap funds (Small), large-cap funds 

(Large), value funds (Value) and growth funds (Growth). The two-style clientele SDFs are 

estimated from NAV-weighted style portfolios of large-cap growth funds (LCG), small-cap 

growth funds (SCG), large-cap value funds (LCV) and small-cap value funds (SCV). Panel 

A provides the mean, standard deviation (StdDev) and selected percentiles of the 

distributions of the SDFs. Panel B provides correlations between the SDFs. The portfolio 

data (see statistics in table 4.3) cover the period January 1998-December 2012. 

Panel A : Distributions of SDFs Extracted from NAV-Weighted Portfolios 

 1-SC SDFs  2-SC SDFs 

 
Small Large Value Growth  LCG SCG LCV SCV 

Mean 0.9979 0.9980 0.9980 0.9980  0.9980 0.9979 0.9979 0.9979 

StdDev 0.2691 0.5307 0.3456 0.3926  0.4202 0.2768 0.4920 0.2654 

     
 

    
Max 1.6976 2.5202 2.0162 2.2619  2.2416 1.7253 2.4430 1.7489 

99% 1.6797 2.2689 1.8602 2.1642  2.2094 1.6767 2.4272 1.6545 

95% 1.4818 1.9003 1.5829 1.5972  1.6521 1.5001 1.7381 1.4777 

90% 1.3841 1.6542 1.4490 1.4444  1.4883 1.3887 1.6597 1.3803 

75% 1.1552 1.3703 1.2136 1.2453  1.2848 1.1484 1.2686 1.1564 

Median 0.9778 0.9760 1.0111 0.9949  0.9751 0.9744 0.9639 0.9713 

25% 0.8151 0.6718 0.7747 0.7747  0.7569 0.8135 0.6924 0.8199 

10% 0.6719 0.3740 0.5420 0.5290  0.5354 0.6497 0.4243 0.6822 

5% 0.5968 0.0843 0.4130 0.3924  0.2996 0.5750 0.2566 0.6108 

1% 0.4008 -0.3958 0.2733 -0.0868  -0.0936 0.3475 -0.2323 0.3967 

Min 0.3515 -0.8958 0.2459 -0.3450  -0.4548 0.3343 -0.6500 0.3881 

Panel B: Correlations between SDFs Extracted from NAV-Weighted Portfolios 

  Small Large Value Growth LCG SCG LCV SCV 

Small 1.0000 0.5096 0.7929 0.7389 0.6375 0.9919 0.4654 0.9910 

Large  1.0000 0.1606 0.8691 0.9575 0.5361 0.0351 0.4849 

Value   1.0000 0.3949 0.2323 0.7726 0.6517 0.7943 

Growth    1.0000 0.9266 0.7920 -0.0214 0.6796 

LCG     1.0000 0.6597 0.0119 0.6160 

SCG      1.0000 0.3951 0.9673 

LCV       1.0000 0.5336 

SCV       

 

1.0000 
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Table 4.5: One-Style Clientele Alphas for SLVG Mutual Funds 

Table 4.5 shows statistics on the cross-sectional distribution of monthly SDF alphas for SLVG 

funds using the one-style clientele SDFs. The one-style clientele SDFs are estimated from NAV-

weighted style portfolios of small-cap funds (Small), large-cap funds (Large), value funds (Value) 

and growth funds (Growth). Panel A provides the mean, standard deviation (StdDev) and selected 

percentiles of the distributions of the estimated alphas (columns under Performance) and their 

corresponding t-statistics (columns under t-statistics). It also reports the t-statistics (t-stat) on the 

significance of the mean of estimated alphas. Panel B gives the proportions of estimated alphas that 

are positive (%𝛼𝑀𝐹,𝑠 > 0) and negative (%𝛼𝑀𝐹,𝑠 < 0). The data (see description in table 4.1) 

cover the period January 1998-December 2012. All statistics are in percentage except the t-

statistics. 

 

Panel A: Performance and t-statistics 

 Performance  t-statistics 

 
Small Large Value Growth 

 
Small Large Value Growth 

Mean 0.0003 0.0044 0.0579 0.2123 
 

-0.0176 0.1250 0.0777 0.2019 

StdDev 0.2811 0.3715 0.2672 0.4083 
 

0.7277 0.3821 0.4098 0.4405 

(t-stat) (0.005) (0.056) (0.997) (2.426) 
     

          
Max 0.7067 1.5898 0.9179 1.4943 

 
2.3518 2.6492 3.0433 2.3506 

99% 0.5759 1.0822 0.6942 1.1197 
 

2.1082 1.3675 2.5134 1.7246 

95% 0.4225 0.6395 0.5217 0.9628 
 

1.0840 0.7924 0.6433 0.9862 

90% 0.3448 0.4726 0.4330 0.7848 
 

0.7587 0.5473 0.3866 0.6250 

75% 0.1711 0.2392 0.2661 0.4934 
 

0.2470 0.3511 0.2202 0.4109 

Median 0.0098 -0.0219 -0.0164 0.1424 
 

0.0122 -0.0221 -0.0106 0.2102 

25% -0.1330 -0.2489 -0.1382 -0.0756 
 

-0.2690 -0.1245 -0.1145 -0.0950 

10% -0.3498 -0.4587 -0.2158 -0.2661 
 

-0.7908 -0.1951 -0.2198 -0.2545 

5% -0.4884 -0.5495 -0.2962 -0.3806 
 

-1.1516 -0.2464 -0.3326 -0.3920 

1% -0.8076 -0.7302 -0.4452 -0.5979 
 

-2.3802 -0.5447 -0.7393 -0.7063 

Min -1.2032 -0.9009 -0.6669 -0.9238 
 

-2.7732 -1.3152 -0.9996 -1.2347 

Panel B: Performance Proportions 

  
Small Large Value Growth 

Performance %𝛼𝑀𝐹,𝑠 > 0 51.63 47.84 47.42 65.34 

Sign %𝛼𝑀𝐹,𝑠 < 0 48.37 52.16 52.58 34.66 
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Table 4.6: Two-Style Clientele Alphas for Corner Mutual Funds 

Table 4.6 shows statistics on the cross-sectional distribution of monthly SDF alphas for 

corner funds using the two-style clientele SDFs. The two-style clientele SDFs are estimated 

from NAV-weighted style portfolios of large-cap growth funds (LCG), small-cap growth 

funds (SCG), large-cap value funds (LCV) and small-cap value funds (SCV). Panel A 

provides the mean, standard deviation (StdDev) and selected percentiles of the distributions 

of the estimated alphas (columns under Performance) and their corresponding t-statistics 

(columns under t-statistics). It also reports the t-statistics (t-stat) on the significance of the 

mean of estimated alphas. Panel B gives the proportions of estimated alphas that are 

positive (%𝛼𝑀𝐹,𝑠 > 0) and negative (%𝛼𝑀𝐹,𝑠 < 0). The data (see description in table 4.1) 

cover the period January 1998-December 2012. All statistics are in percentage except the t-

statistics. 
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Table 4.7: One-Style Clientele Alphas for Mixed Mutual Funds  

Table 4.7 shows statistics on the cross-sectional distribution of monthly SDF alphas for mixed 

funds using the one-style clientele SDFs. The one-style clientele SDFs are estimated from NAV-

weighted style portfolios of small-cap funds (Small), large-cap funds (Large), value funds (Value) 

and growth funds (Growth). Panel A provides the mean, standard deviation (StdDev) and selected 

percentiles of the distributions of the estimated alphas (columns under Performance) and their 

corresponding t-statistics (columns under t-statistics). It also reports the t-statistics (t-stat) on the 

significance of the mean of estimated alphas. Panel B gives the proportions of estimated alphas that 

are positive (%𝛼𝑀𝐹,𝑠 > 0) and negative (%𝛼𝑀𝐹,𝑠 < 0). The data (see description in table 4.1) 

cover the period January 1998-December 2012. All statistics are in percentage except the t-

statistics. 
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Table 4.8: Two-Style Clientele Alphas for Mixed Mutual Funds  

Table 4.8 shows statistics on the cross-sectional distribution of monthly SDF alphas for mixed 

funds using the two-style clientele SDFs. The two-style clientele SDFs are estimated from NAV-

weighted style portfolios of large-cap growth funds (LCG), small-cap growth funds (SCG), large-

cap value funds (LCV) and small-cap value funds (SCV). Panel A provides the mean, standard 

deviation (StdDev) and selected percentiles of the distributions of the estimated alphas (columns 

under Performance) and their corresponding t-statistics (columns under t-statistics). It also reports 

the t-statistics (t-stat) on the significance of the mean of estimated alphas. Panel B gives the 

proportions of estimated alphas that are positive (%𝛼𝑀𝐹,𝑠 > 0) and negative (%𝛼𝑀𝐹,𝑠 < 0). The 

data (see description in table 4.1) cover the period January 1998-December 2012. All statistics are 

in percentage except the t-statistics. 
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Table 4.9: One-Style Clientele Alphas for Other Mutual Funds  

Table 4.9 shows statistics on the cross-sectional distribution of monthly SDF alphas for Other funds 

using the one-style clientele SDFs. The one-style clientele SDFs are estimated from NAV-weighted 

style portfolios of the small-cap funds (Small), large-cap funds (Large), value funds (Value) and 

growth funds (Growth). Panel A provides the mean, standard deviation (StdDev) and selected 

percentiles of the distributions of the estimated alphas (columns under Performance) and their 

corresponding t-statistics (columns under t-statistics). It also reports the t-statistics (t-stat) on the 

significance of the mean of estimated alphas. Panel B gives the proportions of estimated alphas that 

are positive (%𝛼𝑀𝐹,𝑠 > 0) and negative (%𝛼𝑀𝐹,𝑠 < 0). The data (see description in table 4.1) 

cover the period January 1998-December 2012. All statistics are in percentage except the t-

statistics. 

Panel A: Performance and t-statistics 

 Performance  t-statistics 

 
Small Large Value Growth 

 
Small Large Value Growth 

Mean 0.0220 0.1995 0.0398 0.1688 
 

0.0388 0.2809 0.0607 0.2294 

StdDev 0.2749 0.3008 0.3396 0.3119 
 

0.2552 0.4077 0.2395 0.3886 

(t-stat) (0.369) (3.093) (0.539) (2.526) 
     

          
Max 0.9495 1.1208 1.1930 1.2452 

 
1.1840 2.2216 1.1396 1.5379 

99% 0.7604 0.9820 0.9750 1.0288 
 

1.0302 1.4209 0.9797 1.5080 

95% 0.5766 0.8124 0.7837 0.8828 
 

0.5737 1.1304 0.5453 1.0895 

90% 0.3894 0.6204 0.4665 0.5844 
 

0.3265 0.8947 0.4165 0.8572 

75% 0.1767 0.3689 0.1940 0.2887 
 

0.1026 0.4696 0.1315 0.3001 

Median -0.0234 0.1477 -0.0229 0.0913 
 

-0.0198 0.1235 -0.0150 0.0850 

25% -0.1555 0.0074 -0.1666 -0.0256 
 

-0.0933 0.0059 -0.0901 -0.0232 

10% -0.2500 -0.1169 -0.2841 -0.1316 
 

-0.1832 -0.0590 -0.1419 -0.0840 

5% -0.3494 -0.1771 -0.3900 -0.2357 
 

-0.2371 -0.1175 -0.1907 -0.1251 

1% -0.6603 -0.5136 -0.8389 -0.3783 
 

-0.5310 -0.2331 -0.2975 -0.2347 

Min -0.7339 -0.6167 -0.9912 -0.6163 
 

-0.6044 -0.2906 -0.3608 -0.2918 

Panel B: Performance Proportions 

  
Small Large Value Growth 

Performance %𝛼𝑀𝐹,𝑠 > 0 45.85 76.59 47.32 68.29 

Sign %𝛼𝑀𝐹,𝑠 < 0 54.15 23.41 52.68 31.71 
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Table 4.10: Two-Style Clientele Alphas for Other Mutual Funds  

Table 4.10 shows statistics on the cross-sectional distribution of monthly SDF alphas for Other 

funds using the two-style clientele SDFs. The two-style clientele SDFs are estimated from NAV-

weighted style portfolios of large-cap growth funds (LCG), small-cap growth funds (SCG), large-

cap value funds (LCV) and small-cap value funds (SCV). Panel A provides the mean, standard 

deviation (StdDev) and selected percentiles of the distributions of the estimated alphas (columns 

under Performance) and their corresponding t-statistics (columns under t-statistics). It also reports 

the t-statistics (t-stat) on the significance of the mean of estimated alphas. Panel B gives the 

proportions of estimated alphas that are positive (%𝛼𝑀𝐹,𝑠 > 0) and negative (%𝛼𝑀𝐹,𝑠 < 0). The 

data (see description in table 4.1) cover the period January 1998-December 2012. All statistics are 

in percentage except the t-statistics. 
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Table 4.11: Value Added from Style Clientele Alphas with αs = 0.15% 

Table 4.11 shows statistics on the cross-sectional distributions of monthly SDF alphas for the full 

sample using the one-style and two-style clientele SDFs estimated with an upper performance 

bound for the style portfolios of 0.15%. When there are more than one style clientele alphas for a 

fund, the distributions consider either its minimum (Min) or maximum (Max) alphas. Panel A 

provides the mean, standard deviation (StdDev) and selected percentiles of the distributions of the 

estimated one-style and two-style clientele alphas (denoted 1-SC alphas and 2-SC alphas, 

respectively) (columns under Performance) and their corresponding t-statistics (columns under t-

statistics). It also reports the t-statistics (t-stat) on the significance of the mean of estimated alphas. 

Panel B reports proportions of estimated style clientele alphas that are larger (%𝛼𝑀𝐹,𝑠 > 𝛼𝐹𝐹) and 

smaller (%𝛼𝑀𝐹,𝑠 < 𝛼𝐹𝐹) than the Fama-French SDF alphas. The data (see description in table 4.1) 

cover the period January 1998-December 2012. All statistics are in percentage except the t-

statistics. 

Panel A: Performance and t-statistics  

 Performance  t-statistics 

  1-SC alphas 2-SC alphas   1-SC alphas 2-SC alphas 

  Min Max Min Max   Min Max Min Max 

Mean -0.1815 0.1747 -0.2390 0.0742 
 

-0.0549 0.1990 -0.0051 0.1793 

StdDev 0.3176 0.3619 0.4230 0.2901 
 

0.3402 0.4318 0.4068 0.5528 

(t-stat) (-2.713) (2.291) (-2.682) (1.213) 
     

          
Max 1.0794 3.1660 1.1392 2.5139 

 
2.3518 3.1700 2.6301 4.2506 

99% 0.5515 1.1269 0.6099 0.8022 
 

1.1999 1.6782 1.6256 2.0360 

95% 0.2970 0.8136 0.3491 0.5355 
 

0.4849 0.8980 0.7328 1.2565 

90% 0.1735 0.6339 0.2027 0.4219 
 

0.2017 0.6773 0.3788 0.7883 

75% -0.0040 0.3722 0.0145 0.2251 
 

-0.0022 0.3744 0.0102 0.3503 

Median -0.1762 0.1248 -0.1966 0.0615 
 

-0.0888 0.1542 -0.0901 0.0830 

25% -0.3354 -0.0555 -0.4213 -0.0758 
 

-0.1541 -0.0491 -0.1501 -0.0882 

10% -0.5375 -0.1923 -0.7227 -0.2401 
 

-0.2461 -0.1803 -0.2290 -0.2772 

5% -0.6890 -0.3076 -0.9554 -0.3471 
 

-0.3653 -0.3138 -0.3410 -0.4646 

1% -1.0662 -0.5596 -1.7217 -0.6794 
 

-1.0649 -0.7693 -0.9274 -1.2388 

Min -3.2503 -2.9191 -4.2938 -2.2450 
 

-2.7732 -2.2233 -2.1979 -2.2425 

Panel B: Performance Proportions 

  1-SC alphas 2-SC alphas 

  
Min Max Min Max 

Performance %𝛼𝑀𝐹,𝑠 > 𝛼𝐹𝐹 24.74 76.84 29.72 77.47 

Sign %𝛼𝑀𝐹,𝑠 < 𝛼𝐹𝐹 75.26 23.16 70.28 22.53 
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Table 4.12: Value Added from Style Clientele Alphas with αs= 0% 

Table 4.12 shows statistics on the cross-sectional distributions of monthly SDF alphas for the full 

sample using the one-style and two-style clientele SDFs estimated with an upper performance 

bound for the style portfolios of 0%. When there are more than one style clientele alphas for a fund, 

the distributions consider either its minimum (Min) or maximum (Max) alphas. Panel A provides 

the mean, standard deviation (StdDev) and selected percentiles of the distributions of the estimated 

one-style and two-style clientele alphas (denoted 1-SC alphas and 2-SC alphas, respectively) 

(columns under Performance) and their corresponding t-statistics (columns under t-statistics). It also 

reports the t-statistics (t-stat) on the significance of the mean of estimated alphas. Panel B reports 

proportions of estimated style clientele alphas that are larger (%𝛼𝑀𝐹,𝑠 > 𝛼𝐹𝐹) and smaller 

(%𝛼𝑀𝐹,𝑠 < 𝛼𝐹𝐹) than the Fama-French SDF alphas. The data (see description in table 4.1) cover the 

period January 1998-December 2012. All statistics are in percentage except the t-statistics. 

Panel A: Performance and t-statistics 

 Performance  t-statistics 

  1-SC alphas 2-SC alphas   1-SC alphas 2-SC alphas 

  Min Max Min Max   Min Max Min Max 

Mean -0.1879 0.0241 -0.2144 -0.0379 
 

-0.1366 0.0057 -0.1391 -0.0714 

StdDev 0.2795 0.2919 0.3187 0.2657 
 

0.3562 0.3654 0.4146 0.5062 

(t-stat) (-3.192) (0.391) (-3.194) (-0.676) 
     

          
Max 0.8530 2.3333 0.7685 1.8556 

 
1.5955 2.6818 1.8431 2.4043 

99% 0.4166 0.8193 0.4261 0.5991 
 

0.7400 1.1523 0.9709 1.2921 

95% 0.2071 0.5272 0.2224 0.3687 
 

0.2225 0.5165 0.3007 0.6990 

90% 0.1135 0.3667 0.1031 0.2607 
 

0.0956 0.3524 0.1259 0.3899 

75% -0.0335 0.1745 -0.0408 0.1059 
 

-0.0212 0.1587 -0.0277 0.1362 

Median -0.1727 -0.0036 -0.1782 -0.0448 
 

-0.0905 -0.0049 -0.0884 -0.0544 

25% -0.3101 -0.1374 -0.3409 -0.1658 
 

-0.1773 -0.1430 -0.1682 -0.2287 

10% -0.4901 -0.2702 -0.5607 -0.3211 
 

-0.4040 -0.3089 -0.4492 -0.5451 

5% -0.6349 -0.3848 -0.7430 -0.4460 
 

-0.7124 -0.4758 -0.8764 -0.8994 

1% -0.9977 -0.6738 -1.2508 -0.7611 
 

-1.5960 -1.1743 -1.8776 -1.8776 

Min -3.1545 -3.0302 -3.9948 -2.7440 
 

-3.5511 -2.8152 -3.2331 -3.2331 

Panel B: Performance Proportions 

  1-SC alphas 2-SC alphas 

  
Min Max Min Max 

Performance %𝛼𝑀𝐹,𝑠 > 𝛼𝐹𝐹 16.44 58.62 21.62 52.89 

Sign %𝛼𝑀𝐹,𝑠 < 𝛼𝐹𝐹 83.56 41.38 78.38 47.11 
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Table 4.13: Value Added from Style Clientele Alphas with αs = 0.3% 

Table 4.13 shows statistics on the cross-sectional distributions of monthly SDF alphas for the full 

sample using the one-style and two-style clientele SDFs estimated with an upper performance 

bound for the style portfolios of 0.3%. When there are more than one style clientele alphas for a 

fund, the distributions consider either its minimum (Min) or maximum (Max) alphas. Panel A 

provides the mean, standard deviation (StdDev) and selected percentiles of the distributions of the 

estimated one-style and two-style clientele alphas (denoted 1-SC alphas and 2-SC alphas, 

respectively) (columns under Performance) and their corresponding t-statistics (columns under t-

statistics). It also reports the t-statistics (t-stat) on the significance of the mean of estimated alphas. 

Panel B reports proportions of estimated style clientele alphas that are larger (%𝛼𝑀𝐹,𝑠 > 𝛼𝐹𝐹) and 

smaller (%𝛼𝑀𝐹,𝑠 < 𝛼𝐹𝐹) than the Fama-French SDF alphas. The data (see description in table 4.1) 

cover the period January 1998-December 2012. All statistics are in percentage except the t-

statistics. 

Panel A: Performance and t-statistics 

 Performance  t-statistics 

  1-SC alphas 2-SC alphas   1-SC alphas 2-SC alphas 

  Min Max Min Max   Min Max Min Max 

Mean -0.1776 0.3286 -0.2666 0.1867  0.0068 0.3883 0.1062 0.4240 

StdDev 0.3739 0.4479 0.5518 0.3272  0.4161 0.5453 0.5730 0.7010 

(t-stat) (-2.254) (3.482) (-2.293) (2.708)      

 
         

Max 1.4373 3.9988 1.5098 3.1723  3.2598 4.2848 4.0363 5.8856 

99% 0.7143 1.5232 0.7855 1.0721  1.7479 2.3055 2.3873 2.8530 

95% 0.4091 1.1125 0.4931 0.7196  0.8015 1.3792 1.3925 1.8727 

90% 0.2584 0.9113 0.3306 0.5843  0.3783 0.9901 0.8052 1.2919 

75% 0.0398 0.5770 0.0841 0.3493  0.0283 0.5955 0.0959 0.6628 

Median -0.1836 0.2623 -0.2167 0.1644  -0.0912 0.3220 -0.0991 0.2343 

25% -0.3705 0.0136 -0.5034 0.0041  -0.1561 0.0112 -0.1678 0.0037 

10% -0.5977 -0.1222 -0.9096 -0.1671  -0.2326 -0.1041 -0.2301 -0.1499 

5% -0.7628 -0.2465 -1.2201 -0.2795  -0.2941 -0.2036 -0.2779 -0.2845 

1% -1.2292 -0.5169 -2.3046 -0.5725  -0.7409 -0.4741 -0.6018 -0.8388 

Min -3.3617 -2.8014 -4.5929 -1.7960  -2.0818 -1.9209 -1.7761 -1.7761 

Panel B: Performance Proportions 

  1-SC alphas 2-SC alphas 

  
Min Max Min Max 

Performance %𝛼𝑀𝐹,𝑠 > 𝛼𝐹𝐹 29.05 86.32 31.66 88.42 

Sign %𝛼𝑀𝐹,𝑠 < 𝛼𝐹𝐹 70.95 13.68 68.34 11.58 

 

 

 



 

185 

Figure 4.1: Mutual Fund Style Box 

 

Notes: Figure 1 presents a mutual fund style box to illustrate the classification of funds. 

Corner funds represent funds categorized according to two style focuses and are located in 

the four hatched-colored boxes. They include large-cap value funds (box in light gray with 

horizontal lines), large-cap growth funds (box in dark gray with horizontal lines), small-cap 

value funds (box in light gray with squared lines) and small-cap growth funds (box in dark 

gray with squared lines). SLVG funds represent funds categorized according to one style 

focus by combining corner funds with a common style. They include small-cap funds 

(corner boxes with squared lines), large-cap funds (corner boxes with horizontal lines), 

value funds (corner boxes in light gray) and growth funds (corner boxes in dark gray). 

Mixed funds represent funds that are not corner funds (boxes in the medium row and in the 

blend column). Other funds represent funds with a style that does not fit into the style box.  
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Figure 4.2: One and Two-Style Clientele Stochastic Discount Factors  

(a) 

 

(b) 

 

Notes: Figure 2 illustrates the stochastic discount factors (m) as a function of market 

portfolio returns (MKT). Figure 2a shows the stochastic discount factors for one-style 

clienteles. Figure 2b shows the stochastic discount factors for two-style clienteles. 
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Figure 4.3: Histograms of Style Clientele Alphas  

(a) 

 
(b) 

 
Notes: Figure 3 presents histograms illustrating the distributions of the minimum (Min) and 

maximum (Max) style clientele alpha estimates using the one-style clientele (1-SC) SDFs 

(figure 3a) and the two-style clientele (2-SC) SDFs (figure 3b).  
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5 Conclusion 

This thesis examines mutual fund performance evaluation with investor disagreement and 

clientele effects. We study the performance from the point of view of the best potential 

clienteles of mutual funds, in the sense that they value the funds at an upper performance 

bound. Thus, we avoid relying on the point of view of representative investors, as most of 

the literature has done, to instead focus on the most worthy clienteles that mutual funds 

could target. We combine the asset pricing bound literature with the stochastic discount 

factor (SDF) performance evaluation approach first proposed by Glosten and Jagannathan 

(1994) and Chen and Knez (1996) to develop this new measure, called the “best clientele 

alpha”. We consider a general setup where the market is incomplete and preferences are 

potentially heterogeneous. Following Cochrane and Saá-Requejo (2000), we restrict the set 

of SDFs in an economically meaningful way using two conditions: the law-of-one-price 

(LOP) condition of Hansen and Jagannathan (1991) and a no-good-deal condition that rules 

out investment opportunities with unreasonably high Sharpe ratios.  

This thesis contributes to the existing literature on the mutual fund performance 

evaluation with three essays. After developing, implementing and extensively checking the 

robustness of our performance evaluation approach in essay 1, we adapt it to answer 

different research questions in the remaining two essays. In essay 2, we use the best 

clientele alpha to diagnose the appropriateness of candidate performance measures and 

examine their disagreement. In essay 3, we develop clientele-specific performance 

measures based on the style preferences of mutual fund investors.  

In the first essay, we develop a performance measure that considers the best 

potential clienteles of mutual funds in incomplete market with investor disagreement. 

Based on the law-of-one-price and no-good-deal conditions, we obtain an upper bound on 

admissible performance measures that identifies the most favorable evaluation. 

Empirically, we find that an increase in admissible investment opportunities equivalent to 

half the market Sharpe ratio leads to generally positive performance for best clienteles. 

Augmenting monthly Sharpe ratio opportunities by only 0.04 (approximately one third of 

the market Sharpe ratio) is sufficient for their evaluation to achieve zero alpha. Although 
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the literature depicts the maximum Sharpe ratio as a subjective choice, we find that a 

reasonably small disagreement among investors is enough to generate a positive 

performance from the best potential clienteles of a majority of funds.  

The results of essay 1 are robust to the use of different sets of passive portfolios, 

conditioning information, simulated finite sample distributions for inference purposes, and 

adjustments for false discoveries. We also explore a conditional version of the best clientele 

alpha and confirm the findings of Moskowitz (2000), Kosowski (2011) and Glode (2011) 

that best clientele alpha estimates are more positive in recessions than in expansions. 

Finally, we estimate total performance disagreement defined as the difference between best 

and worst clientele alphas. Reinforcing the analysis of Ferson and Lin (2014), we show that 

investor disagreement is economically and statistically significant and can change the 

average evaluation of mutual funds from negative to positive, depending on the clienteles. 

The best clientele performance measure gives an answer to the challenge of Ferson 

(2010, p.229) who argues that it is important « to identify and characterize meaningful 

investor clienteles and to develop performance measures specific to the clienteles ». We 

provide new evidence that the most favorable clienteles generally find positive values to 

mutual funds, in contrast to representative investors in standard performance measures that 

do not consider investor disagreement. Our results shed new light on the puzzling relation 

between the growing importance of the mutual fund industry and the negative value added 

by active management documented empirically, as highlighted by Gruber (1996). They also 

add to the findings of Ferson and Lin (2014) on the importance of heterogeneous 

preferences in performance evaluation.  

In the second essay, we assess the validity of candidate performance measures by 

comparing their alphas with the alpha from the best clientele performance measure. In this 

comparison of the performance for representative investors versus best clienteles, we thus 

use the best clientele performance measure as a diagnostic tool for standard performance 

measures. On one hand, an inadmissibility problem occurs when a candidate alpha is 

greater than the upper admissible bound that is the best clientele alpha. Such analysis, in the 

context of performance evaluation, is similar in purpose to the investigation of Hansen and 

Jagannathan (1991), who propose a SDF volatility bound to diagnose candidate models in 
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the context of asset pricing. On the other hand, a misrepresentation problem occurs when a 

candidate alpha is lower than the best clientele alpha, because the candidate alpha provides 

a severe or pessimistic evaluation of the fund that is an unrealistic value for its targeted 

clienteles. The misrepresentation problem indicates large investor disagreement in 

performance evaluation.  

Our diagnostic tool is uniquely positioned and complementary to the existing 

literature that examines the validity of performance measures with simulations (see Kothari 

and Warner (2001), Farnworth, Ferson, Jackson and Todd (2002), Kosowski, Timmerman, 

Wermers and White (2006) and Coles, Daniel and Nardari (2006), among others). 

Empirically, we perform the diagnosis for twelve candidate models with a total of 21 

different specifications. Our implementation of the manipulation proof performance 

measure (MPPM) of Goetzmann, Ingersoll, Spiegel and Welch (2007) contributes to the 

literature because it provides monthly effective MPPM alpha estimates and their standard 

errors for a large sample of equity mutual funds. To our knowledge, we are the first to 

propose an estimation strategy that allows statistical inferences on the significance of the 

MPPM performance values. 

The results of essay 2 show that the CAPM, the models of Fama and French (1993), 

Carhart (1997) and Ferson and Schadt (1996)), conditional versions of these four models, 

the LOP measure and the MPPM with a high risk aversion parameter misrepresent the 

performance evaluation of mutual funds for their best clienteles. They tend to give severe 

but admissible alphas that imply significant disagreement values comparable to those in 

Ferson and Lin (2014). In contrast, the power and habit-formation consumption-based 

models suffer from the inadmissibility problem as their alphas are too high. Among all 

models, the MPPM with a low risk aversion parameter is the most appropriate in providing 

admissible alphas that reflect the value of funds for their most favorable clienteles. Our 

novel estimation strategy for the MPPM also leads to interesting empirical findings. We 

find that MPPM alphas are relatively sensitive to the choice of risk aversion parameter and 

are difficult to estimate with statistical precision. Compared to other measures, the MPPM 

presents larger cross-sectional standard deviations of fund alphas. 
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In the third essay, as another application of our measurement approach, we focus on 

equity funds grouped by their investment style (i.e., value, growth, small-cap and large-

cap). We develop clientele-specific performance measures to investigate fund style as an 

identifying attribute of meaningful investor clienteles. Such investigation is relevant as 

mutual funds cater to and attract specific clienteles through their widely publicized 

investment style. We propose a performance framework with investor disagreement that 

allows for the identification of meaningful SDFs for style clienteles. To implement the 

framework, we use a new style classification method to better exploit existing objective 

code data from Lipper and account for code changes and missing codes.  

Empirically, we explore the economic properties of the marginal preferences 

reflected in the SDFs for style clienteles. The results show that the preferences implied by 

the SDFs have similar risk aversion but differ in their behavioral features in extreme market 

states. We also examine a clientele-specific performance evaluation using the SDFs for 

style clienteles. The evaluation finds that funds assigned to equity styles have a neutral to 

positive performance when they are evaluated with their relevant clientele-specific 

measure. The performance of the other funds is sensitive to the clienteles, and in particular 

their behavioral tendencies for optimism or pessimism. We finally study the value added of 

the mutual fund industry from the perspective of different style clienteles. We find that the 

sign of the value added is ambiguous and depends on the choice of measures.  

The results of essay 3 document the performance disagreement of investors attracted 

to different fund styles by showing that preferences and alphas differ for size and value 

mutual fund clienteles. They support the conjecture of Ferson (2010) that properly 

evaluating mutual funds might require clientele-specific measures based on meaningful 

investor clienteles.  

Overall, the findings of the three essays provide numerous contributions to the 

literatures associated with mutual funds. We improve on existing performance evaluation 

approaches by developing a performance measure with investor disagreement that focuses 

on the class of investors most favorable to mutual funds (i.e., the best clientele alpha), by 

estimating the MPPM with a new strategy that allows statistical inferences on the 

significance of the performance values, and by proposing clientele-specific performance 
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measures based on the style preferences of mutual fund investors. We contribute to the 

literature on the value added by active management by robustly showing that best clienteles 

generally evaluate positively the performance of mutual funds, and by finding that the 

value added is different for various size and value style clienteles.  

We expand on the literature on the benchmark choice problem by documenting that 

many standard performance evaluation measures suffer from either an inadmissibility 

problem or a misrepresentation problem. We also ensure that the proposed best clientele 

measure and style-clientele-specific measures do not suffer from benchmark choice 

problem by imposing that they correctly price passive portfolios. We complement the 

literature on the comparison of performance measures with simulations by offering a 

diagnostic tool that is uniquely positioned to assess the validity of performance measures 

because it is based on admissible bounds instead of simulations, and by showing that the 

tool is useful to empirically identify problems in existing measures.  

We contribute to the literature on heterogeneous preferences and investor 

disagreement by finding that investor disagreement can be significant enough to change the 

evaluation of funds from positive to negative, by showing that the disagreement between 

the representative investors implicit in many standard measures and best clienteles is 

significant and reinforces the analysis of Ferson and Lin (2014), and by documenting that 

behavioral characteristics and performance values differ for size and value style clienteles. 

Finally, we add to the literature on mutual fund styles by showing that equity styles are 

relevant to identify meaningful investor clienteles and by introducing a new method to 

better exploit available investment objective code data and account for their stability and 

quality.  

Our research on mutual fund performance evaluation can be extended in numerous 

ways. First, other conditions can be imposed to restrict the set of SDFs for performance 

evaluation in an economically meaningful way, like the maximum-gain-loss-ratio condition 

of Bernardo and Ledoit (2000). These conditions can potentially adapt our approach to the 

performance measurement of portfolios with nonlinear payoffs, such as hedge funds. 

Second, we can use the best clientele alpha as a diagnostic tool to document the 
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misrepresentation and inadmissibility problems of numerous other performance models. 

Third, we can study the determinants of investor disagreement by looking at fund 

characteristics, like expense ratios and turnovers, taxes and transaction costs. Finally, future 

research could investigate the impact of investor heterogeneity and disagreement on mutual 

fund flows to better understand the demands of investor clienteles. Ultimately, we agree 

with Ferson (2010) and Ferson and Lin (2014) on their calls for more research on clientele 

effects in performance evaluation. 
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