Cette thèse est composée de trois articles en économie des ressources naturelles non-renouvelables. Nous considérons tour à tour les questions suivantes : le prix in-situ des ressources naturelles non-renouvelables ; le taux d’extraction optimal et le prix des ressources non-renouvelables et durables.
Dans le premier article, nous estimons le prix in-situ des ressources naturelles non-renouvelables en utilisant les données sur le coût moyen d’extraction pour obtenir une approximation du coût marginal. En utilisant la Méthode des Moments Généralisés, une dynamique du prix de marché derivée des conditions d’optimalité du modèle d’Hotelling est estimée avec des données de panel de 14 ressources naturelles non-renouvelables. Nous trouvons des résultats qui tendent à soutenir le modèle. Premièrement, le modèle d’Hotelling exhibe un bon pouvoir explicatif du prix de marché observé. Deuxièmement, bien que le prix estimé présente un changement structurel dans le temps, ceci semble n’avoir aucun impact significatif sur le pouvoir explicatif du modèle. Troisièmement, on ne peut pas rejeter l’hypothèse que le coût marginal d’extraction puisse être approximé par les données sur le coût moyen. Quatrièmement, le prix in-situ estimé en prenant en compte les changements structurels décroît ou exhibe une forme en U inversé dans le temps et semble être corrélé positivement avec le prix de marché. Cinquièmement, pour neuf des quatorze ressources, la différence entre le prix in-situ estimé avec changements structurels et celui estimé en négligeant les changements structurels est un processus de moyenne nulle.
Dans le deuxième article, nous testons l’existence d’un équilibre dans lequel le taux d’extraction optimal des ressources non-renouvelables est linéaire par rapport au stock de ressource en terre. Tout d’abord, nous considérons un modèle d’Hotelling avec une fonction de demande variant dans le temps caractérisée par une élasticité prix constante et une fonction de coût d’extraction variant dans le temps caractérisée par des élasticités constantes par rapport au taux d’extraction et au stock de ressource. Ensuite, nous montrons qu’il existe un équilibre dans lequel le taux d’extraction optimal est proportionnel au stock de ressource si et seulement si le taux d’actualisation et les paramètres des fonctions de demande et de coût d’extraction satisfont une relation bien précise. Enfin, nous utilisons les données de panel de quatorze ressources non-renouvelables pour vérifier empiriquement cette relation. Dans le cas où les paramètres du modèle sont supposés invariants dans le temps, nous trouvons qu’on ne peut rejeter la relation que pour six des quatorze ressources. Cependant, ce résultat change lorsque nous prenons en compte le changement structurel dans le temps des prix des ressources. En fait, dans ce cas nous trouvons que la relation est rejetée pour toutes les quatorze ressources.
Dans le troisième article, nous étudions l’évolution du prix d’une ressource naturelle non-renouvelable dans le cas où cette ressource est durable, c’est-à-dire qu’une fois ex-traite elle devient un actif productif détenu hors terre. On emprunte à la théorie de la détermination du prix des actifs pour ce faire. Le choix de portefeuille porte alors sur les actifs suivant : un stock de ressource non-renouvelable détenu en terre, qui ne procure aucun service productif ; un stock de ressource détenu hors terre, qui procure un flux de services productifs ; un stock d’un bien composite, qui peut être détenu soit sous forme de capital productif, soit sous forme d’une obligation dont le rendement est donné. Les productivités du secteur de production du bien composite et du secteur de l’extraction de la ressource évoluent de façon stochastique. On montre que la prédiction que l’on peut tirer quant au sentier de prix de la ressource diffère considérablement de celle qui découle de la règle d’Hotelling élémentaire et qu’aucune prédiction non ambiguë quant au comportement du sentier de prix ne peut être obtenue de façon analytique.
Mots clés: Ressources naturelles non renouvelables, Prix in-situ, Prix des ressources naturelles, Modèle à changement d’état, Analyse MMG, Données de Panel, Ressources durables, Modèle inter-temporel d’évaluation d’actifs, MEDAF-C, Taux d’extraction